diff --git a/source/_posts/electromagnetism.md b/source/_posts/electromagnetism.md index d8ba0e6..dbb6c89 100644 --- a/source/_posts/electromagnetism.md +++ b/source/_posts/electromagnetism.md @@ -45,22 +45,24 @@ Maxwell Dafa is good! ! {% raw %}{% endraw %} ### 先供上麦克斯韦方程 膜拜膜拜( o=^•ェ•)o - {% raw %}
{% endraw %} $$ -\nabla\cdot\vec{E} &=& \frac{\rho}{\varepsilon_0} +\nabla\cdot\vec{E} = \frac{\rho}{\varepsilon_0} $$ + $$ -\nabla\cdot\vec{B} &=& 0 +\nabla\cdot\vec{B} = 0 $$ + $$ -\nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} +\nabla\times\vec{E} = -\frac{\partial B}{\partial t} $$ + $$ -\nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right) +\nabla\times\vec{B} = \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right) $$ @@ -141,16 +143,19 @@ To Be Continued... {% endraw %} $$ -\nabla\cdot\vec{E} &=& \frac{\rho}{\varepsilon_0} +\nabla\cdot\vec{E} = \frac{\rho}{\varepsilon_0} $$ + $$ -\nabla\cdot\vec{B} &=& 0 +\nabla\cdot\vec{B} = 0 $$ + $$ -\nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} +\nabla\times\vec{E} = -\frac{\partial B}{\partial t} $$ + $$ -\nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right) +\nabla\times\vec{B} = \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right) $$