--- title: 工程电磁学 titleEN: Engineering Electromagnetics date: 2019-02-26 categories: - notes tags: - maxwell --- {% raw %}{% endraw %} 麦克斯韦大法好!! {% raw %}{% endraw %} {% raw %}{% endraw %} Maxwell Dafa is good! ! {% raw %}{% endraw %} {% raw %} {% endraw %} {% raw %}{% endraw %} ### 先供上麦克斯韦方程 膜拜膜拜( o=^•ェ•)o $$ \begin{eqnarray} \nabla\cdot\vec{E} &=& \frac{\rho}{\varepsilon_0} \\ \nabla\cdot\vec{B} &=& 0 \\ \nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} \\ \nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right) \end{eqnarray} $$ ---------------- ## 第一话 - 高斯生库伦 - 假设空间中两点电荷$Q_{1}$,$Q_{2}$,相距d,欲求其相互作用的电场力。 - 现以$Q_{1}$为圆心,$d$为半径做球。根据高斯law可知球面上的电通量只与球内电荷量有关,本例中为$\frac{Q_{1}}{\varepsilon_0}$。 - 将上式中电通量除以求表面积可得电场强度$\frac{Q_{1}}{4\pi d^{2}\varepsilon_0}$ - 场强乘以$Q_{2}$即可得库仑力$\frac{Q_{1}Q_{2}}{4\pi d^{2}\varepsilon_0}$ - 令$k=\frac{1}{4\pi \varepsilon_0}$整理得 $$F = \frac{k Q_{1}Q_{2}}{d^{2}}$$ 证毕 ## 第二话 - 高斯金箍棒 - 假设一均匀带电长度正无穷细杆,电荷密度为$\lambda$,求距其$d$处场强。 - 绕杆画一个过待求点的圆柱,设高为$x$。 - 由于杆长无限,圆柱两底面电场被抵消。 - 圆柱侧面积为$2\pi dx$ - 圆柱内电荷量为$\lambda x$ - 引入高斯,得 $$ 2\pi dxE = \frac{\lambda x}{\varepsilon_{0}} $$ 整理得 $$ E = \frac{\lambda}{2\pi d\varepsilon_{0}} $$ 证毕 ## 高斯球球球 - 首先要有一个带电小球,电量$Q$,想求其外部距其圆心$d$处场强。 - 然后可列式 $$ 4\pi d^2 E = \frac{Q}{\varepsilon_0} $$ 整理得 $$ E = \frac{Q}{4\pi \varepsilon_0 d^2} $$ 毕 ## 高斯大面 - 首先有一个均匀带电无穷面,带电面密度$\rho$,欲求距其$d$的点场强。 - 以无穷面为中央横截面,做一个底面圆心为待求点的圆柱,半径为$r$。 - 由于电场线皆平行,只有两个底面有电场线穿过。 - 可列式 $$ 2\pi r^2 E = \frac{\rho \pi r^2}{\varepsilon_0} $$ 整理得 $$ E = \frac{\rho}{2\varepsilon_0} $$ 完事 ----------- To Be Continued... {% raw %}{% endraw %} {% raw %}{% endraw %} ### First offer to Maxwell's equation, worship ( o=^•ェ•)o $$ \begin{eqnarray} \nabla\cdot\vec{E} &=& \frac{\rho}{\varepsilon_0} \\ \nabla\cdot\vec{B} &=& 0 \\ \nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} \\ \nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right) \end{eqnarray} $$ ---------------- ## Chapter One-Gossian Cullen - Suppose two electric charges $Q_{1}$ and $Q_{2}$ in space are separated by d, and the electric field force they want to interact with. - Now take $Q_{1}$ as the center of the circle and $d$ as the radius to make the ball. According to the Gaussian law, the electric flux on the sphere is only related to the amount of charge in the sphere, which is $\frac{Q_{1}}{\varepsilon_0}$ in this example. - Divide the electric flux in the above formula by the surface area to get the electric field intensity $\frac{Q_{1}}{4\pi d^{2}\varepsilon_0}$ - Field strength is multiplied by $Q_{2}$ to get Coulomb force $\frac{Q_{1}Q_{2}}{4\pi d^{2}\varepsilon_0}$ - Let $k=\frac{1}{4\pi \varepsilon_0}$ to get $$F = \frac{k Q_{1}Q_{2}}{d^{2}}$$ Completed ## Chapter 2-Gauss Golden Cudgel - Assuming that a uniformly charged length is positively infinitely thin and the charge density is $\lambda$, find the field strength $d$ away from it. - Draw a cylinder around the rod and set the height to be $x$. - Due to the infinite length of the rod, the electric fields on the two bottom surfaces of the cylinder are cancelled. - The cylindrical side area is $2\pi dx$ - The amount of charge in the cylinder is $\lambda x$ - Introduce Gaussian, get $$ 2\pi dxE = \frac{\lambda x}{\varepsilon_{0}} $$ Organized $$ E = \frac{\lambda}{2\pi d\varepsilon_{0}} $$ Completed ## Gauss Ball Ball - First, there must be a charged ball with electricity $Q$, and I want to find the field strength at the distance of $d$ from the center of the ball. - Then columnable $$ 4\pi d^2 E = \frac{Q}{\varepsilon_0} $$ Organized $$ E = \frac{Q}{4\pi \varepsilon_0 d^2} $$ complete ## Gaussian Noodles - First, there is a uniformly charged infinite surface, the charged surface density is $\rho$, and the field strength of the point $d$ is desired. - Using the infinite plane as the central cross section, make a cylinder with the center of the bottom surface as the point to be found, and the radius is $r$. - Since the electric field lines are all parallel, only two bottom surfaces have electric field lines passing through. - Columnable $$ 2\pi r^2 E = \frac{\rho \pi r^2}{\varepsilon_0} $$ Organized $$ E = \frac{\rho}{2\varepsilon_0} $$ Finished ----------- To Be Continued... {% raw %}{% endraw %}