QUESTION 1 10 points Save Answer

For the emitter follower circuit (EF) shown below, find the value for the input impedance R_{in} in (M Ω) if current I_C=1.4mA, given that R_E=10k Ω , R_S=0, R_L= ∞ .

QUESTION 2 10 points Save Answer

For the Widlar current mirror circuit shown below, design the circuit to provide a current I_{out} =100 μ A, if I_{P2} =612 μ A. Hence, find the value of R_2 (in $k\Omega$).

QUESTION 3 10 points Save Answer

For the Widlar current mirror circuit shown below, design the circuit to provide a current I_{OUt} =100 μ A, if I_{R2} =685 μ A. Hence, find the value of R_3 (in Ω), given that V_T =25mV.

QUESTION 4 5 points Save Answer

For the simple current mirror circuit shown below, find the value of R2 in (k Ω) to provide the current Iout=3mA.

QUESTION 5 10 points Save Answer

For the emitter follower circuit (EF) shown below, find the value for the output impedance R_{out} in (Ω) if current I_{C} =7.8mA, given that R_{E} =10k Ω , R_{S} =0, R_{L} = ∞ .

QUESTION 6 10 points Save Answer

For the common emitter (CE) circuit shown below, find the value for the output impedance R_{OUt} in (k Ω) if current I_{C} =4mA, given that R_{C} =10k Ω , V_{A} =150 V, R_{L} = ∞ .

QUESTION 7 10 points Save Answer

For the common emitter circuit (CE) shown below, find the value for the voltage gain AV if the current I_C=4.6mA, given that R_C=10k Ω , V_A=150 V, R_L= ∞ .

QUESTION 8 5 points Save Answer

For the emitter follower circuit (EF) shown below, find the value for voltage gain (A_V) if current I_C=2.7mA, given that R_E=10k Ω , R_S=0, R_L= ∞ .

QUESTION 9 5 points Save Answer

For the differential input stage shown below, the differential input impedance is required to be $100k\Omega$. Estimate the bias current in the differential amplifier to meet this specification. Hence calculate the value of R_2 (in $k\Omega$) required to set this bias current. The Early voltage of the NPN transistor is 150 V and that for the PNP is 50 V.

QUESTION 10 10 points Save Answer

For the differential input stage shown below, the differential input impedance is required to be $100k\Omega$. Estimate the bias current in the differential amplifier to meet this specification. Hence calculate the value of the differential gain AVd. The Early voltage of the NPN transistor is 150 V and that for the PNP is 50 V.

QUESTION 11 5 points Save Answer

Match each of the stages shown in the circuit below with its purpose:

- Stage 1
- Stage 2/4
- Stage 3
- Stage 5

- A. set the DC bias for all stages
- B. 'match' the gain stages to avoid loading effects
- C. provide high voltage gain
- D. provide low output resistance

QUESTION 12	5 points Save Answer
The emitter follower amplifier (EF) has	input impedance,
output impedance and	voltage gain. (Hint: use 'high' and 'low' to fill in the blanks)
QUESTION 13	5 points Save Answer
QUESTION 13	5 points Save Answer
QUESTION 13 The common emitter amplifier (CE) has	5 points Save Answer output impedance and