QUESTION 1 10 points Save Answer For the emitter follower circuit (EF) shown below, find the value for the input impedance R_{in} in (M Ω) if current I_C=1.4mA, given that R_E=10k Ω , R_S=0, R_L= ∞ . QUESTION 2 10 points Save Answer For the Widlar current mirror circuit shown below, design the circuit to provide a current I_{out} =100 μ A, if I_{P2} =612 μ A. Hence, find the value of R_2 (in $k\Omega$). QUESTION 3 10 points Save Answer For the Widlar current mirror circuit shown below, design the circuit to provide a current I_{OUt} =100 μ A, if I_{R2} =685 μ A. Hence, find the value of R_3 (in Ω), given that V_T =25mV. QUESTION 4 5 points Save Answer For the simple current mirror circuit shown below, find the value of R2 in (k Ω) to provide the current Iout=3mA. QUESTION 5 10 points Save Answer For the emitter follower circuit (EF) shown below, find the value for the output impedance R_{out} in (Ω) if current I_{C} =7.8mA, given that R_{E} =10k Ω , R_{S} =0, R_{L} = ∞ . QUESTION 6 10 points Save Answer For the common emitter (CE) circuit shown below, find the value for the output impedance R_{OUt} in (k Ω) if current I_{C} =4mA, given that R_{C} =10k Ω , V_{A} =150 V, R_{L} = ∞ . QUESTION 7 10 points Save Answer For the common emitter circuit (CE) shown below, find the value for the voltage gain AV if the current I_C=4.6mA, given that R_C=10k Ω , V_A=150 V, R_L= ∞ . QUESTION 8 5 points Save Answer For the emitter follower circuit (EF) shown below, find the value for voltage gain (A_V) if current I_C=2.7mA, given that R_E=10k Ω , R_S=0, R_L= ∞ . QUESTION 9 5 points Save Answer For the differential input stage shown below, the differential input impedance is required to be $100k\Omega$. Estimate the bias current in the differential amplifier to meet this specification. Hence calculate the value of R_2 (in $k\Omega$) required to set this bias current. The Early voltage of the NPN transistor is 150 V and that for the PNP is 50 V. QUESTION 10 10 points Save Answer For the differential input stage shown below, the differential input impedance is required to be $100k\Omega$. Estimate the bias current in the differential amplifier to meet this specification. Hence calculate the value of the differential gain AVd. The Early voltage of the NPN transistor is 150 V and that for the PNP is 50 V. QUESTION 11 5 points Save Answer Match each of the stages shown in the circuit below with its purpose: - Stage 1 - Stage 2/4 - Stage 3 - Stage 5 - A. set the DC bias for all stages - B. 'match' the gain stages to avoid loading effects - C. provide high voltage gain - D. provide low output resistance | QUESTION 12 | 5 points Save Answer | |--|--| | The emitter follower amplifier (EF) has | input impedance, | | output impedance and | voltage gain. (Hint: use 'high' and 'low' to fill in the blanks) | | | | | | | | | | | QUESTION 13 | 5 points Save Answer | | QUESTION 13 | 5 points Save Answer | | QUESTION 13 The common emitter amplifier (CE) has | 5 points Save Answer output impedance and |