/* Copyright 2013 Daniel Wirtz Copyright 2009 The Closure Library Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS-IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /** * @license Long.js (c) 2013 Daniel Wirtz * Released under the Apache License, Version 2.0 * see: https://github.com/dcodeIO/Long.js for details * * Long.js is based on goog.math.Long from the Closure Library. * Copyright 2009 The Closure Library Authors. All Rights Reserved. * Released under the Apache License, Version 2.0 * see: https://code.google.com/p/closure-library/ for details */ /** * Defines a Long class for representing a 64-bit two's-complement * integer value, which faithfully simulates the behavior of a Java "long". This * implementation is derived from LongLib in GWT. */ (function(global) { /** * Constructs a 64-bit two's-complement integer, given its low and high 32-bit * values as *signed* integers. See the from* functions below for more * convenient ways of constructing Longs. * * The internal representation of a long is the two given signed, 32-bit values. * We use 32-bit pieces because these are the size of integers on which * Javascript performs bit-operations. For operations like addition and * multiplication, we split each number into 16-bit pieces, which can easily be * multiplied within Javascript's floating-point representation without overflow * or change in sign. * * In the algorithms below, we frequently reduce the negative case to the * positive case by negating the input(s) and then post-processing the result. * Note that we must ALWAYS check specially whether those values are MIN_VALUE * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as * a positive number, it overflows back into a negative). Not handling this * case would often result in infinite recursion. * * @exports Long * @class A Long class for representing a 64-bit two's-complement integer value. * @param {number} low The low (signed) 32 bits of the long. * @param {number} high The high (signed) 32 bits of the long. * @param {boolean=} unsigned Whether unsigned or not. Defaults to `false` (signed). * @constructor */ var Long = function(low, high, unsigned) { /** * The low 32 bits as a signed value. * @type {number} * @expose */ this.low = low | 0; /** * The high 32 bits as a signed value. * @type {number} * @expose */ this.high = high | 0; /** * Whether unsigned or not. * @type {boolean} * @expose */ this.unsigned = !!unsigned; }; // NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the from* methods on which they depend. // NOTE: The following cache variables are used internally only and are therefore not exposed as properties of the // Long class. /** * A cache of the Long representations of small integer values. * @type {!Object} */ var INT_CACHE = {}; /** * A cache of the Long representations of small unsigned integer values. * @type {!Object} */ var UINT_CACHE = {}; /** * Returns a Long representing the given (32-bit) integer value. * @param {number} value The 32-bit integer in question. * @param {boolean=} unsigned Whether unsigned or not. Defaults to false (signed). * @return {!Long} The corresponding Long value. * @expose */ Long.fromInt = function(value, unsigned) { var obj, cachedObj; if (!unsigned) { value = value | 0; if (-128 <= value && value < 128) { cachedObj = INT_CACHE[value]; if (cachedObj) return cachedObj; } obj = new Long(value, value < 0 ? -1 : 0, false); if (-128 <= value && value < 128) { INT_CACHE[value] = obj; } return obj; } else { value = value >>> 0; if (0 <= value && value < 256) { cachedObj = UINT_CACHE[value]; if (cachedObj) return cachedObj; } obj = new Long(value, (value | 0) < 0 ? -1 : 0, true); if (0 <= value && value < 256) { UINT_CACHE[value] = obj; } return obj; } }; /** * Returns a Long representing the given value, provided that it is a finite * number. Otherwise, zero is returned. * @param {number} value The number in question. * @param {boolean=} unsigned Whether unsigned or not. Defaults to false (signed). * @return {!Long} The corresponding Long value. * @expose */ Long.fromNumber = function(value, unsigned) { unsigned = !!unsigned; if (isNaN(value) || !isFinite(value)) { return Long.ZERO; } else if (!unsigned && value <= -TWO_PWR_63_DBL) { return Long.MIN_SIGNED_VALUE; } else if (unsigned && value <= 0) { return Long.MIN_UNSIGNED_VALUE; } else if (!unsigned && value + 1 >= TWO_PWR_63_DBL) { return Long.MAX_SIGNED_VALUE; } else if (unsigned && value >= TWO_PWR_64_DBL) { return Long.MAX_UNSIGNED_VALUE; } else if (value < 0) { return Long.fromNumber(-value, false).negate(); } else { return new Long((value % TWO_PWR_32_DBL) | 0, (value / TWO_PWR_32_DBL) | 0, unsigned); } }; /** * Returns a Long representing the 64bit integer that comes by concatenating the given low and high bits. Each is * assumed to use 32 bits. * @param {number} lowBits The low 32 bits. * @param {number} highBits The high 32 bits. * @param {boolean=} unsigned Whether unsigned or not. Defaults to false (signed). * @return {!Long} The corresponding Long value. * @expose */ Long.fromBits = function(lowBits, highBits, unsigned) { return new Long(lowBits, highBits, unsigned); }; /** * Returns a Long representing the 64bit integer that comes by concatenating the given low, middle and high bits. * Each is assumed to use 28 bits. * @param {number} part0 The low 28 bits * @param {number} part1 The middle 28 bits * @param {number} part2 The high 28 (8) bits * @param {boolean=} unsigned Whether unsigned or not. Defaults to false (signed). * @return {!Long} * @expose */ Long.from28Bits = function(part0, part1, part2, unsigned) { // 00000000000000000000000000001111 11111111111111111111111122222222 2222222222222 // LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH return Long.fromBits(part0 | (part1 << 28), (part1 >>> 4) | (part2) << 24, unsigned); }; /** * Returns a Long representation of the given string, written using the given * radix. * @param {string} str The textual representation of the Long. * @param {(boolean|number)=} unsigned Whether unsigned or not. Defaults to false (signed). * @param {number=} radix The radix in which the text is written. * @return {!Long} The corresponding Long value. * @expose */ Long.fromString = function(str, unsigned, radix) { if (str.length == 0) { throw(new Error('number format error: empty string')); } if (str === "NaN" || str === "Infinity" || str === "+Infinity" || str === "-Infinity") { return Long.ZERO; } if (typeof unsigned === 'number') { // For goog.math.Long compatibility radix = unsigned; unsigned = false; } radix = radix || 10; if (radix < 2 || 36 < radix) { throw(new Error('radix out of range: ' + radix)); } if (str.charAt(0) == '-') { return Long.fromString(str.substring(1), unsigned, radix).negate(); } else if (str.indexOf('-') >= 0) { throw(new Error('number format error: interior "-" character: ' + str)); } // Do several (8) digits each time through the loop, so as to // minimize the calls to the very expensive emulated div. var radixToPower = Long.fromNumber(Math.pow(radix, 8)); var result = Long.ZERO; for (var i = 0; i < str.length; i += 8) { var size = Math.min(8, str.length - i); var value = parseInt(str.substring(i, i + size), radix); if (size < 8) { var power = Long.fromNumber(Math.pow(radix, size)); result = result.multiply(power).add(Long.fromNumber(value)); } else { result = result.multiply(radixToPower); result = result.add(Long.fromNumber(value)); } } return result; }; // NOTE: the compiler should inline these constant values below and then remove these variables, so there should be // no runtime penalty for these. // NOTE: The following constant values are used internally only and are therefore not exposed as properties of the // Long class. /** * @type {number} */ var TWO_PWR_16_DBL = 1 << 16; /** * @type {number} */ var TWO_PWR_24_DBL = 1 << 24; /** * @type {number} */ var TWO_PWR_32_DBL = TWO_PWR_16_DBL * TWO_PWR_16_DBL; /** * @type {number} */ var TWO_PWR_31_DBL = TWO_PWR_32_DBL / 2; /** * @type {number} */ var TWO_PWR_48_DBL = TWO_PWR_32_DBL * TWO_PWR_16_DBL; /** * @type {number} */ var TWO_PWR_64_DBL = TWO_PWR_32_DBL * TWO_PWR_32_DBL; /** * @type {number} */ var TWO_PWR_63_DBL = TWO_PWR_64_DBL / 2; /** * @type {!Long} */ var TWO_PWR_24 = Long.fromInt(1 << 24); /** * @type {!Long} * @expose */ Long.ZERO = Long.fromInt(0); /** * @type {!Long} * @expose */ Long.ONE = Long.fromInt(1); /** * @type {!Long} * @expose */ Long.NEG_ONE = Long.fromInt(-1); /** * @type {!Long} * @expose */ Long.MAX_SIGNED_VALUE = Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0, false); /** * @type {!Long} * @expose */ Long.MAX_UNSIGNED_VALUE = Long.fromBits(0xFFFFFFFF | 0, 0xFFFFFFFF | 0, true); /** * Alias of {@link Long.MAX_SIGNED_VALUE} for goog.math.Long compatibility. * @type {!Long} * @expose */ Long.MAX_VALUE = Long.MAX_SIGNED_VALUE; /** * @type {!Long} * @expose */ Long.MIN_SIGNED_VALUE = Long.fromBits(0, 0x80000000 | 0, false); /** * @type {!Long} * @expose */ Long.MIN_UNSIGNED_VALUE = Long.fromBits(0, 0, true); /** * Alias of {@link Long.MIN_SIGNED_VALUE} for goog.math.Long compatibility. * @type {!Long} * @expose */ Long.MIN_VALUE = Long.MIN_SIGNED_VALUE; /** * @return {number} The value, assuming it is a 32-bit integer. * @expose */ Long.prototype.toInt = function() { return this.unsigned ? this.low >>> 0 : this.low; }; /** * @return {number} The closest floating-point representation to this value. * @expose */ Long.prototype.toNumber = function() { if (this.unsigned) { return ((this.high >>> 0) * TWO_PWR_32_DBL) + (this.low >>> 0); } return this.high * TWO_PWR_32_DBL + (this.low >>> 0); }; /** * @param {number=} radix The radix in which the text should be written. * @return {string} The textual representation of this value. * @override * @expose */ Long.prototype.toString = function(radix) { radix = radix || 10; if (radix < 2 || 36 < radix) { throw(new Error('radix out of range: ' + radix)); } if (this.isZero()) { return '0'; } var rem; if (this.isNegative()) { // Unsigned Longs are never negative if (this.equals(Long.MIN_SIGNED_VALUE)) { // We need to change the Long value before it can be negated, so we remove // the bottom-most digit in this base and then recurse to do the rest. var radixLong = Long.fromNumber(radix); var div = this.div(radixLong); rem = div.multiply(radixLong).subtract(this); return div.toString(radix) + rem.toInt().toString(radix); } else { return '-' + this.negate().toString(radix); } } // Do several (6) digits each time through the loop, so as to // minimize the calls to the very expensive emulated div. var radixToPower = Long.fromNumber(Math.pow(radix, 6)); rem = this; var result = ''; while (true) { var remDiv = rem.div(radixToPower); var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt(); var digits = intval.toString(radix); rem = remDiv; if (rem.isZero()) { return digits + result; } else { while (digits.length < 6) { digits = '0' + digits; } result = '' + digits + result; } } }; /** * @return {number} The high 32 bits as a signed value. * @expose */ Long.prototype.getHighBits = function() { return this.high; }; /** * @return {number} The high 32 bits as an unsigned value. * @expose */ Long.prototype.getHighBitsUnsigned = function() { return this.high >>> 0; }; /** * @return {number} The low 32 bits as a signed value. * @expose */ Long.prototype.getLowBits = function() { return this.low; }; /** * @return {number} The low 32 bits as an unsigned value. * @expose */ Long.prototype.getLowBitsUnsigned = function() { return this.low >>> 0; }; /** * @return {number} Returns the number of bits needed to represent the absolute * value of this Long. * @expose */ Long.prototype.getNumBitsAbs = function() { if (this.isNegative()) { // Unsigned Longs are never negative if (this.equals(Long.MIN_SIGNED_VALUE)) { return 64; } else { return this.negate().getNumBitsAbs(); } } else { var val = this.high != 0 ? this.high : this.low; for (var bit = 31; bit > 0; bit--) { if ((val & (1 << bit)) != 0) { break; } } return this.high != 0 ? bit + 33 : bit + 1; } }; /** * @return {boolean} Whether this value is zero. * @expose */ Long.prototype.isZero = function() { return this.high == 0 && this.low == 0; }; /** * @return {boolean} Whether this value is negative. * @expose */ Long.prototype.isNegative = function() { return !this.unsigned && this.high < 0; }; /** * @return {boolean} Whether this value is odd. * @expose */ Long.prototype.isOdd = function() { return (this.low & 1) == 1; }; /** * @return {boolean} Whether this value is even. */ Long.prototype.isEven = function() { return (this.low & 1) == 0; }; /** * @param {Long} other Long to compare against. * @return {boolean} Whether this Long equals the other. * @expose */ Long.prototype.equals = function(other) { if (this.unsigned != other.unsigned && (this.high >>> 31) != (other.high >>> 31)) return false; return (this.high == other.high) && (this.low == other.low); }; /** * @param {Long} other Long to compare against. * @return {boolean} Whether this Long does not equal the other. * @expose */ Long.prototype.notEquals = function(other) { return !this.equals(other); }; /** * @param {Long} other Long to compare against. * @return {boolean} Whether this Long is less than the other. * @expose */ Long.prototype.lessThan = function(other) { return this.compare(other) < 0; }; /** * @param {Long} other Long to compare against. * @return {boolean} Whether this Long is less than or equal to the other. * @expose */ Long.prototype.lessThanOrEqual = function(other) { return this.compare(other) <= 0; }; /** * @param {Long} other Long to compare against. * @return {boolean} Whether this Long is greater than the other. * @expose */ Long.prototype.greaterThan = function(other) { return this.compare(other) > 0; }; /** * @param {Long} other Long to compare against. * @return {boolean} Whether this Long is greater than or equal to the other. * @expose */ Long.prototype.greaterThanOrEqual = function(other) { return this.compare(other) >= 0; }; /** * Compares this Long with the given one. * @param {Long} other Long to compare against. * @return {number} 0 if they are the same, 1 if the this is greater, and -1 * if the given one is greater. * @expose */ Long.prototype.compare = function(other) { if (this.equals(other)) { return 0; } var thisNeg = this.isNegative(); var otherNeg = other.isNegative(); if (thisNeg && !otherNeg) return -1; if (!thisNeg && otherNeg) return 1; if (!this.unsigned) { // At this point the signs are the same return this.subtract(other).isNegative() ? -1 : 1; } else { // Both are positive if at least one is unsigned return (other.high >>> 0) > (this.high >>> 0) || (other.high == this.high && (other.low >>> 0) > (this.low >>> 0)) ? -1 : 1; } }; /** * @return {!Long} The negation of this value. * @expose */ Long.prototype.negate = function() { if (!this.unsigned && this.equals(Long.MIN_SIGNED_VALUE)) { return Long.MIN_SIGNED_VALUE; } return this.not().add(Long.ONE); }; /** * Returns the sum of this and the given Long. * @param {Long} other Long to add to this one. * @return {!Long} The sum of this and the given Long. * @expose */ Long.prototype.add = function(other) { // Divide each number into 4 chunks of 16 bits, and then sum the chunks. var a48 = this.high >>> 16; var a32 = this.high & 0xFFFF; var a16 = this.low >>> 16; var a00 = this.low & 0xFFFF; var b48 = other.high >>> 16; var b32 = other.high & 0xFFFF; var b16 = other.low >>> 16; var b00 = other.low & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 + b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 + b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 + b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 + b48; c48 &= 0xFFFF; return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned); }; /** * Returns the difference of this and the given Long. * @param {Long} other Long to subtract from this. * @return {!Long} The difference of this and the given Long. * @expose */ Long.prototype.subtract = function(other) { return this.add(other.negate()); }; /** * Returns the product of this and the given long. * @param {Long} other Long to multiply with this. * @return {!Long} The product of this and the other. * @expose */ Long.prototype.multiply = function(other) { if (this.isZero()) { return Long.ZERO; } else if (other.isZero()) { return Long.ZERO; } if (this.equals(Long.MIN_VALUE)) { return other.isOdd() ? Long.MIN_VALUE : Long.ZERO; } else if (other.equals(Long.MIN_VALUE)) { return this.isOdd() ? Long.MIN_VALUE : Long.ZERO; } if (this.isNegative()) { if (other.isNegative()) { return this.negate().multiply(other.negate()); } else { return this.negate().multiply(other).negate(); } } else if (other.isNegative()) { return this.multiply(other.negate()).negate(); } // If both longs are small, use float multiplication if (this.lessThan(TWO_PWR_24) && other.lessThan(TWO_PWR_24)) { return Long.fromNumber(this.toNumber() * other.toNumber(), this.unsigned); } // Divide each long into 4 chunks of 16 bits, and then add up 4x4 products. // We can skip products that would overflow. var a48 = this.high >>> 16; var a32 = this.high & 0xFFFF; var a16 = this.low >>> 16; var a00 = this.low & 0xFFFF; var b48 = other.high >>> 16; var b32 = other.high & 0xFFFF; var b16 = other.low >>> 16; var b00 = other.low & 0xFFFF; var c48 = 0, c32 = 0, c16 = 0, c00 = 0; c00 += a00 * b00; c16 += c00 >>> 16; c00 &= 0xFFFF; c16 += a16 * b00; c32 += c16 >>> 16; c16 &= 0xFFFF; c16 += a00 * b16; c32 += c16 >>> 16; c16 &= 0xFFFF; c32 += a32 * b00; c48 += c32 >>> 16; c32 &= 0xFFFF; c32 += a16 * b16; c48 += c32 >>> 16; c32 &= 0xFFFF; c32 += a00 * b32; c48 += c32 >>> 16; c32 &= 0xFFFF; c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48; c48 &= 0xFFFF; return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32, this.unsigned); }; /** * Returns this Long divided by the given one. * @param {Long} other Long by which to divide. * @return {!Long} This Long divided by the given one. * @expose */ Long.prototype.div = function(other) { if (other.isZero()) { throw(new Error('division by zero')); } else if (this.isZero()) { return Long.ZERO; } if (this.equals(Long.MIN_SIGNED_VALUE)) { if (other.equals(Long.ONE) || other.equals(Long.NEG_ONE)) { return min; // recall that -MIN_VALUE == MIN_VALUE } else if (other.equals(Long.MIN_VALUE)) { return Long.ONE; } else { // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|. var halfThis = this.shiftRight(1); var approx = halfThis.div(other).shiftLeft(1); if (approx.equals(Long.ZERO)) { return other.isNegative() ? Long.ONE : Long.NEG_ONE; } else { var rem = this.subtract(other.multiply(approx)); var result = approx.add(rem.div(other)); return result; } } } else if (other.equals(Long.MIN_VALUE)) { return Long.ZERO; } if (this.isNegative()) { if (other.isNegative()) { return this.negate().div(other.negate()); } else { return this.negate().div(other).negate(); } } else if (other.isNegative()) { return this.div(other.negate()).negate(); } // Repeat the following until the remainder is less than other: find a // floating-point that approximates remainder / other *from below*, add this // into the result, and subtract it from the remainder. It is critical that // the approximate value is less than or equal to the real value so that the // remainder never becomes negative. var res = Long.ZERO; var rem = this; while (rem.greaterThanOrEqual(other)) { // Approximate the result of division. This may be a little greater or // smaller than the actual value. var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber())); // We will tweak the approximate result by changing it in the 48-th digit or // the smallest non-fractional digit, whichever is larger. var log2 = Math.ceil(Math.log(approx) / Math.LN2); var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48); // Decrease the approximation until it is smaller than the remainder. Note // that if it is too large, the product overflows and is negative. var approxRes = Long.fromNumber(approx, this.unsigned); var approxRem = approxRes.multiply(other); while (approxRem.isNegative() || approxRem.greaterThan(rem)) { approx -= delta; approxRes = Long.fromNumber(approx, this.unsigned); approxRem = approxRes.multiply(other); } // We know the answer can't be zero... and actually, zero would cause // infinite recursion since we would make no progress. if (approxRes.isZero()) { approxRes = Long.ONE; } res = res.add(approxRes); rem = rem.subtract(approxRem); } return res; }; /** * Returns this Long modulo the given one. * @param {Long} other Long by which to mod. * @return {!Long} This Long modulo the given one. * @expose */ Long.prototype.modulo = function(other) { return this.subtract(this.div(other).multiply(other)); }; /** * @return {!Long} The bitwise-NOT of this value. * @expose */ Long.prototype.not = function() { return Long.fromBits(~this.low, ~this.high, this.unsigned); }; /** * Returns the bitwise-AND of this Long and the given one. * @param {Long} other The Long with which to AND. * @return {!Long} The bitwise-AND of this and the other. * @expose */ Long.prototype.and = function(other) { return Long.fromBits(this.low & other.low, this.high & other.high, this.unsigned); }; /** * Returns the bitwise-OR of this Long and the given one. * @param {Long} other The Long with which to OR. * @return {!Long} The bitwise-OR of this and the other. * @expose */ Long.prototype.or = function(other) { return Long.fromBits(this.low | other.low, this.high | other.high, this.unsigned); }; /** * Returns the bitwise-XOR of this Long and the given one. * @param {Long} other The Long with which to XOR. * @return {!Long} The bitwise-XOR of this and the other. * @expose */ Long.prototype.xor = function(other) { return Long.fromBits(this.low ^ other.low, this.high ^ other.high, this.unsigned); }; /** * Returns this Long with bits shifted to the left by the given amount. * @param {number} numBits The number of bits by which to shift. * @return {!Long} This shifted to the left by the given amount. * @expose */ Long.prototype.shiftLeft = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var low = this.low; if (numBits < 32) { var high = this.high; return Long.fromBits(low << numBits, (high << numBits) | (low >>> (32 - numBits)), this.unsigned); } else { return Long.fromBits(0, low << (numBits - 32), this.unsigned); } } }; /** * Returns this Long with bits shifted to the right by the given amount. * @param {number} numBits The number of bits by which to shift. * @return {!Long} This shifted to the right by the given amount. * @expose */ Long.prototype.shiftRight = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var high = this.high; if (numBits < 32) { var low = this.low; return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >> numBits, this.unsigned); } else { return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1, this.unsigned); } } }; /** * Returns this Long with bits shifted to the right by the given amount, with * the new top bits matching the current sign bit. * @param {number} numBits The number of bits by which to shift. * @return {!Long} This shifted to the right by the given amount, with * zeros placed into the new leading bits. * @expose */ Long.prototype.shiftRightUnsigned = function(numBits) { numBits &= 63; if (numBits == 0) { return this; } else { var high = this.high; if (numBits < 32) { var low = this.low; return Long.fromBits((low >>> numBits) | (high << (32 - numBits)), high >>> numBits, this.unsigned); } else if (numBits == 32) { return Long.fromBits(high, 0, this.unsigned); } else { return Long.fromBits(high >>> (numBits - 32), 0, this.unsigned); } } }; /** * @return {!Long} Signed long * @expose */ Long.prototype.toSigned = function() { var l = this.clone(); l.unsigned = false; return l; }; /** * @return {!Long} Unsigned long * @expose */ Long.prototype.toUnsigned = function() { var l = this.clone(); l.unsigned = true; return l; }; /** * @return {Long} Cloned instance with the same low/high bits and unsigned flag. * @expose */ Long.prototype.clone = function() { return new Long(this.low, this.high, this.unsigned); }; // Enable module loading if available if (typeof module != 'undefined' && module["exports"]) { // CommonJS module["exports"] = Long; } else if (typeof define != 'undefined' && define["amd"]) { // AMD define("Math/Long", [], function() { return Long; }); } else { // Shim if (!global["dcodeIO"]) { global["dcodeIO"] = {}; } global["dcodeIO"]["Long"] = Long; } })(this);