In This Session

· Signed Numbers. EEE104 – Digital Electronics (I) Arithmetic Operations with Signed Numbers Lecture 4 Dr. Ming Xu Dept of Electrical & Electronic Engineering XJTLU 2 1 Signed Numbers Signed Numbers • The left-most bit in a signed binary number is the sign In the 2's complement system bit. A positive number is represented as a zero sign bit • The sign bit is 0 is for a positive number, and is 1 is for followed by true binary magnitude bits, e.g. +25 is a negative number. 00011001 • Digital systems such as computers usually use 2's Sign bit _____ ___ _____Magnitude bits complement system to represent signed numbers. · Negative numbers are the 2's complements of the · The 2's complement of a number is calculated by corresponding positive numbers, e.g. -25 is 11100111. inverting its bits and adding 1. · Positive numbers are the 2's complements of the corresponding negative numbers.

4

Signed Numbers

- We can add an infinite number of 0s to the left of a positive number and will not change its value, e.g. 011 (+3) = 00011 (+3).
- We can add an infinite number of 1s to the left of a negative number and will not change its value, e.g. 101 (-3) = 11101 (-3).

Signed Numbers

The decimal value of signed binary numbers

- It is determined by summing the weights in all bit positions where there are 1s.
- The weight of a 1 sign bit (for a negative number) is calculated as that of a magnitude bit but given a negative value.

Signed Numbers

The decimal value of signed binary numbers

Positive number	$-2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$ 0 1 0 1 0 1 1 0 64 + 16 + 4 + 2 = +86
Negative number	$-2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$ $1 0 1 0 1 0 1 0$ $-128 + 32 + 8 + 2 = -86$

Signed Numbers

Range of signed integer numbers

· The number of different combinations of n bits is

Total combinations $= 2^n$

e.g. 8 bits for 256 numbers.

• The range of values for n-bit numbers is

$$-(2^{n-1})$$
 to $+(2^{n-1}-1)$

e.g. 8 bits for -128 to +127.

7

5

6

Arithmetic Operations with Signed Numbers

Addition

• Add the two numbers and discard any final carry bit.

Both numbers positive	00000111	7
	+ 00000100	+ 4
	00001011	11
Positive number with		
magnitude larger than	00001111	15
negative number	+ 11111010	+ -6
Discard carry →	1 00001001	9

Arithmetic Operations with Signed Numbers

Addition

Positive number with magnitude larger than negative number	$\begin{array}{r} 00010000 \\ + 11101000 \\ \hline 11111000 \end{array}$	
Both numbers negative Discard carry	$\begin{array}{r} 11111011\\ + 11110111\\ \rightarrow 1 11110010 \end{array}$	-5 $+ -9$ -14

10

Arithmetic Operations with Signed Numbers

9

11

Addition

- **Overflow**: when two numbers are added, the number of bits required to represent the sum exceeds the number of bits in the two numbers.
- It occurs only when both numbers are positive or negative.

ee jaar 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990	125
- 32	+ 58
ад владе и ми бу веконого на Авелики пре на 10110111	183
Sign incorrect	

Arithmetic Operations with Signed Numbers

Subtraction

- Subtraction is implemented through addition.
- Change the sign of the subtrahend and add to the minuend, e.g. subtracting +6 is equivalent to adding -6.
- The sign of a binary number is changed by taking its 2's complement.

minuend

- subtrahend difference

Arithmetic Operations with Signed Numbers

Subtraction

 $\begin{array}{l} 00001000 - 00000011 \\ \text{In this case, } 8 - 3 = 8 + (-3) = 5. \\ 00001000 \quad \text{Minuend } (+8) \\ + 1111101 \quad 2\text{'s complement of subtrahend } (-3) \\ \text{Discard carry} \rightarrow \hline 1 \ 00000101 \quad \text{Difference } (+5) \\ 00001100 - 11110111 \\ \text{In this case, } 12 - (-9) = 12 + 9 = 21. \\ 00001100 \quad \text{Minuend } (+12) \end{array}$

 $\frac{+\ 00001100}{0001001} \frac{2^{\circ} \text{s complement of subtrahend (+9)}}{\text{Difference (+21)}}$

Arithmetic Operations with Signed Numbers

Multiplication — Partial Products Method

- 1. Compute the magnitude product of corresponding positive numbers.
- 2. Attach a 0 sign bit. If the signs of the two numbers are different (negative product), take the 2's complement of the outcome.

Arithmetic Operations with Signed Numbers

Multiplication	Step 2 1010011	Multiplicand
maniphoation	× 0111011	Multiplier
Multiply the signed number	er 1010011	1st partial product
01010011 (+83) and	+ 1010011	2nd partial product
11000101 (-59).	11111001	Sum of 1st and 2nd
	+ 0000000	3rd partial product
Step 1	011111001	Sum
$11000101 \longrightarrow 00111011$	+ 1010011	4th partial product
	1110010001	Sum
Step 3	+ 1010011	5th partial product
0 1001100100001 (+4897)	100011000001	Sum
	+ 1010011	6th partial product
\downarrow	1001100100001	Sum
1 0110011011111 (-4897)	+ 0000000	7th partial product
	1001100100001	Final product

Arithmetic Operations with Signed Numbers

Division - accomplished using subtraction in computers:

- 1. Initialize the quotient to zero.
- 2. Subtract the divisor from the dividend or previous partial remainder. If the partial remainder is:
 - positive, add 1 to the quotient and repeat.
 - zero, add 1 to the quotient and finish.
 - negative, finish.
- 3. Determine the sign of the quotient by checking the signs of the dividend and divisor. dividend

 $\frac{divisor}{divisor}$ = quotient

14

16