EEE104 - Digital Electronics (I)

Lecture 4

Dr. Ming Xu

Dept of Electrical \& Electronic Engineering XJTLU

In This Session

- Signed Numbers.
- Arithmetic Operations with Signed Numbers

Signed Numbers

- The left-most bit in a signed binary number is the sign bit.
- The sign bit is 0 is for a positive number, and is 1 is for a negative number.
- Digital systems such as computers usually use 2's complement system to represent signed numbers.
- The 2's complement of a number is calculated by inverting its bits and adding 1.

Signed Numbers

In the 2's complement system

- A positive number is represented as a zero sign bit followed by true binary magnitude bits, e.g. +25 is

- Negative numbers are the 2's complements of the corresponding positive numbers, e.g. -25 is 11100111.
- Positive numbers are the 2's complements of the corresponding negative numbers.

Signed Numbers

- We can add an infinite number of 0 s to the left of a positive number and will not change its value, e.g. $011(+3)=00011(+3)$.
- We can add an infinite number of 1 s to the left of a negative number and will not change its value, e.g. $101(-3)=11101(-3)$.

Signed Numbers

The decimal value of signed binary numbers

- It is determined by summing the weights in all bit positions where there are 1s.
- The weight of a 1 sign bit (for a negative number) is calculated as that of a magnitude bit but given a negative value.

Signed Numbers

The decimal value of signed binary numbers

Positive number

$$
\begin{array}{rlllllll}
-2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
64 & + & 16 & +4 & +2 & =+86
\end{array}
$$

Negative number $\begin{array}{llllllll}-2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0}\end{array}$
$\begin{array}{llllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$-128+32+8+2=-86$

Signed Numbers

Range of signed integer numbers

- The number of different combinations of n bits is

Total combinations $=2^{n}$

e.g. 8 bits for 256 numbers.

- The range of values for n-bit numbers is

$$
-\left(2^{n-1}\right) \text { to }+\left(2^{n-1}-1\right)
$$

e.g. 8 bits for -128 to +127 .

Arithmetic Operations with Signed Numbers

Addition

- Add the two numbers and discard any final carry bit.

Both numbers positive \begin{tabular}{r}
00000111

+00000100

\hline 00001011

7

\hline+4
\end{tabular}

Positive number with

magnitude larger than		
negative number		
Discard carry	00001111 +11111010 100001001	15

Arithmetic Operations with Signed Numbers

Addition

Arithmetic Operations with Signed Numbers

Addition

- Overflow: when two numbers are added, the number of bits required to represent the sum exceeds the number of bits in the two numbers.
- It occurs only when both numbers are positive or negative.
01111101
+00111010

$\underbrace{10110111}$ | 125 |
| ---: |
| +58
 183 |

 \uparrow

Arithmetic Operations with Signed Numbers

Subtraction

- Subtraction is implemented through addition.
- Change the sign of the subtrahend and add to the minuend, e.g. subtracting +6 is equivalent to adding -6 .
- The sign of a binary number is changed by taking its 2's complement.
minuend
- subtrahend
difference

Arithmetic Operations with Signed Numbers

Subtraction

$00001000-00000011$
In this case, $8-3=8+(-3)=5$.

$$
00001000 \text { Minuend }(+8)
$$

+111111012 's complement of subtrahend (-3)
Discard carry $\rightarrow 100000101$ Difference (+5)
00001100 - 11110111
In this case, $12-(-9)=12+9=21$.

$$
00001100 \text { Minuend }(+12)
$$

+000010012 's complement of subtrahend (+9)
00010101 Difference (+21)

Arithmetic Operations with Signed Numbers

Multiplication — Partial Products Method

1. Compute the magnitude product of corresponding positive numbers.
2. Attach a 0 sign bit. If the signs of the two numbers are different (negative product), take the 2's complement of the outcome.

Arithmetic Operations with Signed Numbers

Multiplication	$\begin{array}{r} \text { Step } 21010011 \\ \times 0111011 \\ \hline \end{array}$	Multiplicand Multiplier
Multiply the signed number	1010011	1st partial product
01010011 (+83) and	+ 1010011	2nd partial product
11000101 (-59).	11111001	Sum of 1st and 2nd
	+ 0000000	3rd partial product
Step 1	011111001	Sum
$11000101 \longrightarrow .00111011$	+ 1010011	4th partial product
	1110010001	Sum
	+1010011	5th partial product
01001100100001 (+4897)	100011000001	Sum
	+ 1010011	6th partial product
	1001100100001	Sum
10110011011111 (-4897)	+ 0000000	7th partial product
	1001100100001	Final product

Arithmetic Operations with Signed Numbers

Division-accomplished using subtraction in computers:

1. Initialize the quotient to zero.
2. Subtract the divisor from the dividend or previous partial remainder. If the partial remainder is:

- positive, add 1 to the quotient and repeat.
- zero, add 1 to the quotient and finish.
- negative, finish.

3. Determine the sign of the quotient by checking the signs of the dividend and divisor.

$$
\frac{\text { dividend }}{\text { divisor }}=\text { quotient }
$$

