
EEE102 AS1 Report by Yimian LIU

1

EEE102 Assessment 1 Report

Yimian Liu 1717608

March 13, 2019

1. INTRODUCTION ... 2

2. PROBLEM STATEMENT .. 2

2.1 Vectors Comparison ...2

2.2 Fraction Class ..3

3. ANALYSIS ... 4

3.1 Vectors Comparison ...4

3.2 Fraction Class ..5

4. DESIGN ... 5

4.1 Int Vector Input Algorithm ...5

4.2 Vector Comparison Algorithm 1 ..6

4.3 Vector Comparison Algorithm 2 ..6

4.4 Find Common Divisor ..6

4.5 Transform Repeated Decimals to Fraction ...7

5. IMPLEMENTATION .. 7

6. TEST... 8

6.1 Vectors Comparison ...8

6.2 Fraction Class ..9

7. CONCLUSION .. 13

EEE102 AS1 Report by Yimian LIU

2

1. Introduction

After having a basic understanding concerning the most efficient programming language C in last

semester, this year we are honored to learn C++, which is object oriented and tend to make

development and cooperation easier and enjoyable. As the first assignment of EEE102, this exercise

aims to let us have a basic scope about what is a object oriented programming language and

beginning to get used to Class, Object, Container (e.g. vector) and Quote (e.g. int&) etc. under the

instruction of software development process(SDP).

In the development process, we are required to designed a function which can compare if two int

type vectors are same and also to design a Fraction Class which provides usual fraction operation

in C++. This will be more detailly discussed in the following paragraph.

2. Problem Statement

2.1 Vectors Comparison

There are mainly four steps for this problem according to the assignment requirement.

2.1.1 Get User’s Input

Before comparing two vectors and test our function, we are suggested to design an input process

which can automatically get input which ended with a return key from user’s input behavior and

temporarily store them somewhere.

2.1.2 Allocate Input Content to Vector

This process aims to get all int type number without any other illegal value from the former user’s

input and allocated them into vector appropriately.

2.1.3 Compare Two Vector

In this section, we need to use two different methods to compare two vectors, packages this process

into a function and return whether these two vectors are same using bool type. In this scope, the

order and repeat of elements in vectors are ignored. For example, vector {1, 2, 3, 3, 4} and vector

{4, 4, 3, 2, 2, 1} are regarded as the same because for every element in the first vector you can find

a same one in the second.

EEE102 AS1 Report by Yimian LIU

3

2.2 Fraction Class

This question requests us to define a new class which can represent a normal fraction and can deal

with basic fraction operation such as add, divide etc. Requirements can be divided in to three

groups, the basic one, the advanced one and my additional requirement under input, output and

operation section.

2.2.1 Input

Basic Requirement

⚫ The Fraction can be declared with nothing and means 0. E.g. Fraction a;

⚫ The Fraction can be declared with both a numerator and denominator. E.g. Fraction b(3,-4);

⚫ The Fraction can be declared with simple numerator. E.g. Fraction c(5);

Advanced Requirement

⚫ The Fraction can be declared with another Fraction. E.g. Fraction f = b;

⚫ Input is normalized and simplified.

⚫ Only the numerator can be negative.

⚫ Decimals should be converted to Fraction form.

My Requirement

⚫ The Fraction can be declared with a double type number. E.g. Fraction d(-3.14);

⚫ The Fraction can be declared with double number directly. E.g. Fraction e = 1.3333;

⚫ Recognize repeated decimals and transfer it to corresponding Fraction.

⚫ Can be input use cin with decimals. E.g. cin >> f; (input: 3.14)

⚫ Can be input use cin with fraction. E.g. cin >> f; (input: -3/4)

2.2.2 Output

Basic Requirement

⚫ There has an output.

Advanced Requirement

⚫ Can output decimals. E.g. f.val();

⚫ Can output numerator and denominator. E.g. f.top(), f.bottom();

My Requirement

⚫ Can directly use cout to output.

EEE102 AS1 Report by Yimian LIU

4

2.2.3 Operation

Basic Requirement

⚫ Add, subtract, multiple and divide. E.g. (+, -, *, /)

⚫ Compare base on values. E.g. (==, <, <=, >, >=, !=).

My Requirement

⚫ Get opposite number and reciprocal. E.g. Fraction f(3,4); -f = -3/4; ~f = 4/3;

⚫ Get remainder. E.g. f%2;

⚫ Allow f++ and ++f, f--and --f.

⚫ Allow f +=?, f -=?, f *=?, f /=?.

⚫ Can directly operate with other numbers.

3. Analysis

3.1 Vectors Comparison

3.1.1 Input

The function is suggested to have two int type vectors as its parameters. While the value of these

vectors should be input by users via cin stream. For one input which ended with a return key, the

delimiter between numbers can be anything other than numbers. Which may mean that, we need

to config where a number begin and where it ends. Inevitably, the input from users would be

anything thus all possible input such as ‘,%<J’ must be considered.

3.1.2 Output

The output of the function is a bool type variable. Besides, this comparison result should be output

to the screen with cout stream.

3.1.3 Variables

Corresponding with both input and output process, at least four variables are required such as a

string type variable for temporarily store user’s input, two int type vectors, and also an int variable

for extract int number from string.

As for the variables in the vec_same() function, for each algorithm, different local variables are

utilized.

EEE102 AS1 Report by Yimian LIU

5

3.2 Fraction Class

3.2.1 Variables

Due to the problem statement in last section, we decide to use three variables in the class to store

a fraction. A bool to store whether the fraction is negative. Two unsigned long int to store the

numerator and denominator. All of these three variables was set in private zone, where anything

outside the class cannot access.

3.2.2 Input

There are four ways for input. The first on is input value when declaring the class. Then, the value

can be reset at any time use Fraction.set() function. This function accepts both fraction and double

type parameters. The third way is use cin stream to input. Just as other type number, you can

directly use cin >> Fraction to input a new value for Fraction. This kind of input accept double and

also fraction format like this ‘-3/4’. The last way to input is directly assigning value such as Fraction

= 3.141.

3.2.3 Output

there are mainly four output formats. The first one is directly use Fraction in a cout stream like this

cout << Fraction. This will push a string to cout in format like ‘-4/3’. The second way is use

Fraction.toStr() function. This will return a string just like it shows in cout stream. The third way is

use Fraction.val(). This will return a double decimals. The fourth way is to use Fraction.top() and

Fraction.bottom() to get its numerator and denominator.

4. Design

4.1 Int Vector Input Algorithm

To get the int type value from input, we first storage the cin

stream to string. Then, for each char in string, we use ASCII to

judge if its is a number. If it is a number, we will find the end

of the number an put it into the vector. While the char is not a

char, we will ignore it and to look at the next char in the string.

This process repeats until meet the end of the string.

Since cin automatically deals the ‘\n’, in this scope, we only

need to consider if a char is number or not number.

Figure 1 – Int Vector Input Algorithm

EEE102 AS1 Report by Yimian LIU

6

4.2 Vector Comparison Algorithm 1

The first algorithm to compare two vectors is as shown

in Figure 2. The thought is, for each element in vector A,

we find if there is a same element in vector B. And then

we record this result. Then, we let A as the former B and

B as the former A and repeat this process. Which is to say,

for every element in former B, we find if there is a same

one in former A. If the forward and reverse comparison

both return true, then we can confirm that these two

vectors are same.

4.3 Vector Comparison Algorithm 2

The second method is that we sort the element of each vector

first use the sort() function from standard library. This

function can sort the element in certain order and will not

delete the repeated element. Thus, for each vector after being

sorted, we find the next different element and compare them.

If they are all the same, then the two vectors are same.

Otherwise, the two vector will be not the same.

4.4 Find Common Divisor

There are many methods to find the greatest common

divisor of two number. One of the most classical way is to

get the remainder of the two number, then replace the two

number and let the remainder to replace the bigger number.

Repeat this process until the reminder approach zero.

Under this condition, the larger number is the greatest

common divisor we want. This process is shown in Figure4.

To solve this problem, we include the Multithread Process

algorithm as shown in Figure 4. When it is time to insert

new data, the program will not stop the whole game to wait

for the internet, but try to create a new thread to execute

this mission. In this case, when the program uploads the

data underground, the game will continue the next round

without hesitation.

Figure 1 – Vector Comparison Algorithm 1

Figure 2 – Vector Comparison Algorithm 2

Figure 3 – Find Common Divisor

EEE102 AS1 Report by Yimian LIU

7

4.5 Transform Repeated Decimals to Fraction

According to mathematic, every repeated decimal is

rational number and can be transform to fraction.

Under this circumstance, this algorithm tries to

achieve this goal. For a repeated decimal, the most

significant part is its repeated part. To get this part,

we need to remove the integer part of the double

type decimal and remain the decimal part. Then,

transfer the decimal part from double to unsigned

long int type for the convenience of the following

process. Use recursion to find the repeat part.

However, the repeat part at this time could not be

exactly in the right order. For example, if the repeat

part is ‘234’, at this stage the repeat part recognized

might be ‘342’ or ‘423’. Thus the next step is to check

if the order of the repeat part is correct.

After successfully get the repeat part, the integer part and the left part, we can use mathematic

method to compute the numerator and . According to material on internet, the numerator of a

repeated decimal is equal to the unrepeated part and first repeated part of the decimal subtract the

first repeat part. The denominator part is a combination of the repeat part length’s 9 and the not

repeat part length’s 0. For example, for decimal .4232323, the repeat part is 23, which length is 2.

And its non-repeat part is 4, which length is 1. In this case, the denominator would be 990. Our

algorithm is a represent of this math method in C++ code format.

5. Implementation

There are four Cpp file of this assessment. Since I have written some codes that belong to C11, it is

recommended to use a complier such as gcc. I have prepared a gcc automatic compile script named

compilergcc.bat for help.

same_vec.cpp

This file contains all of the source code and test code of the first exercise. You can also get it from

the following url.

url: https://github.com/string1995/eee102/blob/master/as1/same_vec.cpp

Fraction.h

This file includes the source code of Fraction Class which belong to the second exercise. It is also

support online view from the following url.

url: https://github.com/string1995/eee102/blob/master/as1/Fraction.h

Figure 5 – Transform Repeated Decimals to Fraction

https://github.com/string1995/eee102/blob/master/as1/same_vec.cpp
https://github.com/string1995/eee102/blob/master/as1/Fraction.h

EEE102 AS1 Report by Yimian LIU

8

Fraction_test.cpp

This file contains the test code of Fraction Class.

url: https://github.com/string1995/eee102/blob/master/as1/Fraction_test.cpp

6. Test

6.1 Vectors Comparison

Input Test

When input a series of numbers ended by a return key and be separated by not numbers, the

program should correctly recognize the number and push them into the vector.

When the input is in normal forsmat.

Test result:

When the input is strange and numbers are mixed with chars that difficult to deal with.

Test result:

As you can see from Figure 7, the numbers were recognized even they are mixed with several very

strange characters. However, there is one the need to be point out. In the vector A, there is a ‘-4’ in

the input context. However, this part was recognized to be ‘4’ instead of ‘-4’.

I finally decide not to fix this problem since I am a little confused about the requirement in the

instruction that “delimiter can be anything other than numbers”. As I don’t know if ‘-’ is one part of

numbers, I decides not to regard this as a bug.

Figure 6 – Test Result of Input in normal format

Figure 7 – Test Result of strange input

https://github.com/string1995/eee102/blob/master/as1/Fraction_test.cpp

EEE102 AS1 Report by Yimian LIU

9

Comparison Test

When elements in these two vectors are same but in different order, they should be regarded as

same.

Test result:

The repeat of element should not influence the judgment.

Test result:

Contain relation should not be regarded as same.

Test result:

6.2 Fraction Class

Input Test

Input when declaration, all input should be normalized and simplified.

Test result:

Figure 8 – Test Result of Elements in different order

Figure 9 – Test Result of repeat elements

Figure 10 – Test Result of B contains A

Figure 12 – Input Test of declaration

Figure 11 – Test Result of A contains B

EEE102 AS1 Report by Yimian LIU

10

Output Test

Output test using cout directly.

Test result:

Output test of decimal.

Test result:

Output test of numerator.

Test result:

Output test of denominator.

Test result:

Figure 13 – Output Test of decimals

Figure 12 – Output Test of direct cout

Figure 14 – Output Test of numerator

Figure 15 – Output Test of denominator

EEE102 AS1 Report by Yimian LIU

11

Operator Test

Let b = -3/4. Test the opposite number -b and reciprocal ~b.

Test result:

Let b = -3/4, e = 4/3 and c = 5. Test operator +, -, *, / and %.

Test result:

Let b = -3/4, e = 4/3. Test operator +, -, *, / and % interreact with other types of number.

Test result:

Let b = -3/4. Test b++, ++b, b--, --b.

Test result:

Let b = -3/4 and c = 5. Test assignment +=, -=, *=, /=.

Test result:

Figure 16 – Operator Test of – and ~

Figure 17 – Operator Test of +, -, *, / and %

Figure 18 – Operator Test of +, -, *, / and % with other type

Figure 19 – Operator Test of b++, ++b, b--, --b

Figure 20 – Assignment Test of +=, -=, *=, /=

EEE102 AS1 Report by Yimian LIU

12

Comparison Test

Let b = -3/4, c = 5 and f = 3/4. Test >, <, >=, <=, ==, !=.

Test result:

Divide 0 Test

Declare a new Fraction with denominator equals 0.

Test result:

cin Input Test

Input with cin in fraction format.

Test result:

Input with cin in decimal fromat.

Test result:

Figure 21 – Comparison Test of >, <, >=, <=, ==, !=

Figure 22 – Divide 0 Test

Figure 23 – cin Input Test in Fraction

Figure 24 – cin Input Test in Decimal

EEE102 AS1 Report by Yimian LIU

13

7. Conclusion

In this report, we have deeply explored how two int type vectors can be compared and how to build

a practical fraction class which can almost be treated just as the other number type in C++. By

finishing this assignment, I got a deeper understanding concerning object-oriented programing

and also had a general and useful perspective on C++ class. Different from the struct in C, class

seems to be more flexible and easier to practice. With classes, it tends to be more enjoyable to

program since there are more room in program that you can define by yourself, instead of just

following the standard library. This feature is also very exciting when cooperating with others. As

every function can be classified into classes, and each class can be designed to be a black box which

users can use it without knowing what exactly going on in the box. This makes collaboration easier

to farm-out and developed.

After this report, I deeply feel that there are reasons that to develop C++ even that C had seemed to

be enough powerful. However, there are still shortage of C++. For instance, it does not have a unified

library and package control system. This make C++ a little embarrassed compared with other

language such as js and go, while C++ has its extraordinary perform in execute efficiency.

