
Experiment 22 - Monte Carlo Simulation

ELEC273∗

October 31, 2019

Abstract

This report introduced the results and discussion of the experiment which aiming to
explore the features and applications of Monte Carlo method. A penalty kicking model
was established wit Matlab with random kicks following uniform distribution and Gaussian
distribution. The situation with no goalkeeper, uniformly acted goalkeeper and goalkeeper
with special strategy were considered. In the discussion section, the pro and con of Monte
Carlo method, the influence of changing of standard deviation in Gaussian cases, and some
possible suggestions for penalty kicks participants were studied.

Declaration

I confirm that I have read and understood the University’s definitions of plagiarism and collusion from
the Code of Practice on Assessment. I confirm that I have neither committed plagiarism in the com-
pletion of this work nor have I colluded with ant other party in the preparation and production of this
work. The work presented here is my own and in my own words except where I have clearly indicated
and acknowledged that I have quoted or used figures from published or unpublished sources (including
the web). I understand the consequences of engaging in plagiarism and collusion as described in the
Code of Practice on Assessment (Appendix L).

∗IMPORTANT: In a standard technical report, you would need to include here your personal details as the
author of the document. However, remember that marking of coursework is anonymous and therefore you should
remove this part before submitting your report for Year 2 labs! Do not include your name, student ID, email
address or any other personal information.

Contents

1 Introduction 1

2 Materials and Methods 1
2.1 Part 1: No Goalkeeper Tests . 2
2.2 Part 2: With Goalkeeper Tests . 2

3 Results 2
3.1 Part 1: No Goalkeeper Tests . 2

3.1.1 Task 1: Calculation . 2
3.1.2 Task 2&3: Matlab Simulation . 3
3.1.3 Task 4: Perspective Towards N . 3
3.1.4 Task 5: Perspective Towards R . 4
3.1.5 Task 6: Compare R and N . 4
3.1.6 Task 7: Gaussian Distribution . 4

3.2 Part 2: With Goalkeeper Tests . 6
3.2.1 Task 8: Uniform Case . 6
3.2.2 Task 9: Gaussian Case . 7
3.2.3 Task 10: Smarter Goalkeepers . 7

4 Discussion 9

5 Conclusions 10

References 10

Appendices 11

A Matlab Source Code 11
A.1 Overall Structure . 11
A.2 Main Codes . 11

A.2.1 Task 2&3 . 11
A.2.2 Task 4 . 12
A.2.3 Task 5 . 12
A.2.4 Task 7 . 13
A.2.5 Task 8 . 15
A.2.6 Task 9 . 15
A.2.7 Task 10 . 16

A.3 Function Codes . 17
A.3.1 Draw . 17
A.3.2 Math . 17
A.3.3 Tools . 18
A.3.4 Distribution Methods . 19

1 Introduction

Monte Carlo method was a method to solve problems that can be transformed to statistical
problems. The theory of Monte Carlo method is to utilize random variables to simulate statis-
tic problems and apply means to approach the theoretical result. This method was first put
forwarded by scientists who worked for producing the first nuclear weapon in the world. The
Monte Carlo method introduce procedures to simulate a realistic problem step by step. The
first step is to design a set of random samples of size N from according probability distribution
methods. Secondly, obtain the values of this part by implementing respective methods. Thirdly,
calculate the value wanted from this set of samples. Fourthly, repeat the above steps for R times
and examine the actual value with these partial results. [1]

Monte Carlo method was widely used in physics, computing Science, finance, telecommu-
nications and games etc.. With the development of computer technology, the effective and
efficiency of the application of Monte Carlo method were considerably improved, which indi-
cated more general value of this method for modern industry. It was significant to explore and
acknowledge some basic features and usages of Monte Carlo method.

2 Materials and Methods

To easily simulate penalty kicks events, a simple goal model was established according to the
instruction on the lab script[1]. In this experiment, Matlab was utilized to modeling the situation
with pseudo random number generated with Monte Carlo algorithm.

Figure 1: Goal Model (taken from [1])

It is assumed that the ball can be kicked randomly and will only fall in the circle area as it
shown in Figure 1. The distribution of balls is expected to follow certain distribution model, such
as uniform distribution and normal distribution. In order to explore the distinctions between
among different distribution models under diverse conditions, this experiment was designed into
two parts. The first part was for the situation with no goalkeepers while the second part focused
on the condition that the goalkeeper acted.

1

2.1 Part 1: No Goalkeeper Tests

In this part, the situation with no goalkeeper was modeled. Firstly, the theoretical result of
the hit rate was calculated under the assumption that the distribution of balls follows uniform
distribution. Secondly, Matlab was utilized to simulate this process with a uniform random
number generator. Thirdly, the influence of simulating shots number N and experiment repeat
times R was studied with perspectives of line charts generated with Matlab. Furthermore, the
hypothesis was changed to that the distribution of balls abides by Gaussian distribution and
the experiment steps above were repeated for this new assumption.

2.2 Part 2: With Goalkeeper Tests

Figure 2: Goalkeeper Action to Penalty Shoot-outs (taken from [1])

Under the condition that there are goalkeeper, this football goal model can be further
improved. To easily analyse the situations, the action of the goalkeeper was classified into five
types ideally, as shown in Figure 2. Firstly, it was considered that the possibility of these
five cases was equal following uniform random distribution. Matlab was used to simulate the
shooting process and then the hit rate can be figured out. Secondly, similarly with the produce
in Part 1, the hypothesis was changed from uniform random distribution to Gaussian random
distribution and the simulation was implemented again. Thirdly, the actions of goalkeeper was
updated from equally distributed to that 90% of the time the goalkeeper may choose position 4
and position 5. Under this circumstance, the probability of scoring was required to be simulated
with kicking 100 and 1000 balls.

3 Results

3.1 Part 1: No Goalkeeper Tests

This section presents and comments the result from the simulation with no goalkeeper.

3.1.1 Task 1: Calculation

In this subsection, the theoretical value of scoring probability will be calculated under the
condition that balls distributed in the circle with a radius of

√
5 (as shown in Figure 1) uniformly.

In this case, the hit rate can be obtained through the fraction of the goal area and the circle
area presented in Equation 1.

Pscoring =
Srect
Scircle

. (1)

As the area of the rectangle goal is 8 and the area of the circle zone is 5π, the possibility
then can be computed, which is 51.0%.

2

3.1.2 Task 2&3: Matlab Simulation

To simulate a uniform random kicking situation, Matlab was utilized to generate virtual kicking
and display the distribution in illustration. The code was shown in Listing 2 in Appendix. This
code achieved the requirement of both Task 2 and Task 3, which allowed user to input the shots
times N and experiment repeat times R and then the possibility of scoring would be given out
and a illustration of shotting will be presented.

Figure 3: Shotting Illustration with N=1000 & R=1 (Task 3)

Run the code, with the input of N = 1000 and R = 1, it was indicated that the scoring
possibility was approximate 51% and the generated shotting illustration was shown in Figure
3.

3.1.3 Task 4: Perspective Towards N

Figure 4: Line Chart of Probability against N with R=5 (Task 4)

With the code in Listing 3, a line chart of scoring probability against N can be obtained.
As it presented in Figure 4, the value of the probability approached 51% when the N increased.

3

This may indicate that, with the shotting times increasing, the experimental value could become
more stable and approach the theoretical value, which is 51.0% as it mentioned in Task 1 in
this case.

3.1.4 Task 5: Perspective Towards R

Figure 5: Line Chart of Probability against R with N=1000 (Task 5)

By practicing the source code of Listing 4 in Appendix, the probability against R with
N = 1000 was explored. As it shown in Figure 5, similar with the result in Task 4, the
probability became stable at 51% when the experiment repeat more times. However, this
phenomenon was not so obvious as it shown in Task4. One reason for this is that the increasing
range of Task 4 was around 100000 but the increasing for Task 5 is only 20.

3.1.5 Task 6: Compare R and N

From Task4 and Task 5, it was noticed that with the increasing of total shotting times, the
probability of scoring would become stable and approach 51.0%, which is its theoretical value.
It was also mentioned that the reason why the tendency of stabilisation in Task 5 was not as
obvious as Task 4 was that Task 4 shotting considerably more times than Task 5. In this case,
it can also be indicated that the increasing of R and N can both promote the accuracy of the
experimental probability.

3.1.6 Task 7: Gaussian Distribution

In this case, it was required to substitute the distribution generation method from uniform
random distribution to Gaussian random distribution. With a smart design of the program
architecture, the only thing needed was to change the method (function) parameters in the
code of Task 2&3, Task 4, Task 5 from unifrnd circle to normrnd circle.

4

Figure 6: Shotting Illustration with N=1000 & R=1 (Task 7 3)

Using the code in Listing 5, Task 2 and Task 3 were repeated as required. Figure 6 illustrated
the same simulation with Task 2 with Gaussian method. Comparing with the uniform situation,
the distribution in this case seemed to be more centralized at the center of the goal. Inevitably,
the probability increased to 74% in this case, which was considerable large than the uniform
one.

Figure 7: Line Chart of Probability against N with R=5 (Task 7 4)

Listing 6 presented the source code for the repeat of Task 4. By running Listing 6, Figure 7
which explored the relation between scoring probability and shooting times can be generated.
Similar with the uniform distribution, with the shotting times increasing, the probability become
stable at 73%, which was different from the value 51% in uniform case.

Listing 7 displayed the Matlab code for the exploration of the relation between the proba-
bility and experiment repeat times R. As the result shown in Figure 8, even if the increasing
of R was slowly, it can also be figured out that the probability was trying to approach around
73%.

5

Figure 8: Line Chart of Probability against R with N=1000 (Task 7 5)

3.2 Part 2: With Goalkeeper Tests

This section presents and comments the result from the simulation with goalkeeper.

3.2.1 Task 8: Uniform Case

As the goalkeeper in this case was exist, several functions such as uniform 5case (Listing 18)
was designed to simulate the action of the goalkeeper and one function isGoalKept (Listing
15) was utilized to judge whether a ball was scored. With a Matlab project architecture with
high reusability, the addition of goalkeeper can be easily achieved by simply changing several
parameters as it shown in Listing 8.

Figure 9: Scored Balls Distribution Simula-
tion for R=100

Figure 10: Scored Balls Distribution Simula-
tion for R=1000

Figure 9 and Figure 10 displayed the situation of R = 100 and R = 1000 correspondingly.
It can be noticed that the scoring probability for 100 and 1000 kicks were 26% and 35%. After
repeating the case of R = 100 for several times, it was observed that the value of probability was
shaken around 35%, thus it was explained that as the kicks increased, the scoring probability
could approach 35%. Compared with the scoring probability 51% in Task 1 and Task 3, it
can be figured that , with the same distribution method, the scoring probability considerably
decreased after adding a goalkeeper.

6

3.2.2 Task 9: Gaussian Case

By substituting the distribution method parameter from Function unifrnd circle (Listing 20) to
Function normrnd circle (Listing 17) as shown in Listing ??, the behavior of the kickers can be
switched to Gaussian mode.

Figure 11: Scored Balls Distribution (Gaus-
sian) Simulation for R=100

Figure 12: Scored Balls Distribution (Gaus-
sian) Simulation for R=1000

The simulated scoring probability for Gaussian situation was 53% and 47% for R = 100 and
R = 1000 correspondingly. With the increasing of the kicks, the probability approached 47.3%.
The distribution illustrations were shown as Figure 11 and 12 respectively. Comparing with the
result in Task 8, the concentration of the kicks was higher than the balls distribution in Task 8,
which is also the distinct between uniform distribution and Gaussian distribution. Therefore,
the final scoring probability was improved as more kicks fallen into the goal. Different from the
result in Task 7 with no goalkeeper, the scoring probability was considerable decreased since a
considerable number of kicks in the goal were blocked by the goalkeeper. This explained the
drop down of the result from Task 7 to this Task.

3.2.3 Task 10: Smarter Goalkeepers

In this part, the goalkeeper was required to be simulated to be smarter. For technique reasons,
it was assumed that the goalkeeper tended to choose the last two cases in Figure 2 with 90%. To
achieve this, a uniform 5case plus (Listing 19) Function was designed to substitute the former
uniform 5case (Listing 18) Function to Listing ?? and Listing ??. After the modification, the
result can be generated with Function unifrnd circle (Listing 20) in uniform case and Function
normrnd circle (Listing 17) in Gaussian case.

7

Figure 13: Scored Balls Distribution Simula-
tion for R=100

Figure 14: Scored Balls Distribution Simula-
tion for R=1000

Figure 13 and Figure 14 presented the result of 100 kicks and 1000 kicks with uniform
distribution, which were 37% and 38% correspondingly. Comparing with the result 26% and
35% in Task 8, it was observed that the scoring probability was increased since the goalkeeper
only tended to block the kicks in the 4&5 cases, which may mean that there were more scored
kicks on the upper and middle area.

Figure 15: Scored Balls Distribution (Gaus-
sian) Simulation for R=100

Figure 16: Scored Balls Distribution (Gaus-
sian) Simulation for R=1000

Figure 15 and Figure 16 displayed the Gaussian method simulation result with the kicks of
100 and 1000, which were 56% and 51%. Unlike to the result 53% and 47% in Task 9, it can
also be indicated that the scoring probability was decreased comparing to the situation that
the goalkeeper uniformly randomly acted. The reason for this was considered quite similar to
the reason mentioned in the last paragraph. Nevertheless, the result should be slight different
as the distribution was changed to Gaussian distribution thus this could give rise to a distinct
increased value of the final result, which was not clearly indicated by the simulation.

4 Discussion

In terms of the advantages of Monte Carlo method, from this experiment, four advantages can be
concluded. Firstly, with Monte Carlo method, a complex math process, such as the calculation
of the scoring probability in Gaussian distribution, can be easily achieved through a computer.
Secondly, with the increasing of the experiment repeat times, the error of the result can be

8

considerably reduced. Furthermore, it was flexible when using Monte Carlo method to balance
the accuracy of the result and the time consumed on computing, which means that, it would
be possible to obtain a rough result in a short time in some situation. Additionally, nearly all
problems which can be transformed to statistic problems can be approached via Monte Carlo
method. Q1

The drawbacks of Monte Carlo method were mainly classified into the following three points.
Firstly, a considerable number of computing resources and time are required when using Monte
Carlo method to obtain a accuracy result. Secondly, the error generated by the Monte Carlo
method is probability error and can not be effectively removed. Moreover, as the generation
process is simulated artificially, Monte Carlo method seems to be limited in some periodical
application and may give rise to generate same random values. Q1

Although the model in this experiment has fully considered the situation of the kicks and
the actions of the goalkeeper, there are still several improvement can be proposed. Firstly, the
reaction of the goalkeeper could be designed according to the kicking direction of the kicker.
Secondly, the effect from the environment such as the wind and the sun, which may dazzling the
goalkeeper, can also be considered and influence the action of the kickers and the goal keeper.
Besides, the behavior classification of the goalkeeper can be further divided. Furthermore, it is
also believed that even the goalkeeper choose the right action, it is still possible that the ball
finally go through the goal and scores. Q2

After changing the standard deviation of the Gaussian distribution in Task 7 and Task 9, it
was observed that the result of scoring probability would change. For both Task 7 and Task 8,
when the standard deviation become smaller, the kicks will become more concentrated to the
center of the goal, which indicates increasing precision and not changing accuracy. Q3

To find the relation of estimating the value of π, from Equation 1, the following Equation
can be obtained. Q4.

Pscoring =
WL

πR2
. (2)

From Equation 2, the relation of π and Pscoring can be conducted as the following equation.

π =
WL

PscoringR2
. (3)

After input the result of scoring probability 51% in Task 2 to Equation 3, the value of π
can be calculated, which is 3.137. For the result in the Gaussian case, after the value 74% is
input, the π is calculated to be 2.16, which is quite far from the right value. The reason for this
is that the area of the circle which contains the π is formed uniformly, which is similar to the
definition of uniform distribution but different from the Gaussian distribution. In a word, the
ununiformity of Gaussian distribution causes this deviation. Q4

From the result of Part 2 simulation (Figure 10, 12, 14, 16), it is advised to the penalty
takers that the scoring opportunity could be higher if they kick towards the upper left corner
and upper right corner. As for the goalkeepers, it is suggested that they should protect the
corner of the goal more and not just focus on several special action modes, which means that,
try to protect the area of the goal as much as possible. Q5

9

5 Conclusions

In this experiment, features and application of Monte Carlo method were explored and dis-
cussed with the assistance of Matlab. Penalty kicks were simulated with the distribution of
kicks following uniform distribution and Gaussian distribution and the goalkeeper with differ-
ent behaviors. It was further discussed about the advantages and limitation of Monte Carlo
method as well as some suggestions against the penalty takers and the goalkeepers on the basis
of the modeling result.

References

[1] W Al-Nuaimy, A Al-Ataby, M Lopez-Benitez, “Experiment 22 - monte carlo sim-
ulation,” https://vital.liv.ac.uk/bbcswebdav/pid-2008619-dt-content-rid-11366223 1/
xid-11366223 1, University of Liverpool, 2019.

10

https://vital.liv.ac.uk/bbcswebdav/pid-2008619-dt-content-rid-11366223_1/xid-11366223_1
https://vital.liv.ac.uk/bbcswebdav/pid-2008619-dt-content-rid-11366223_1/xid-11366223_1

Appendices

A Matlab Source Code

A.1 Overall Structure

This is the source code files structure instruction, which displays the list of main code files and
function files.

Listing 1: Source Code Files Structure

s r c
|
|−−−main code
| |−−−t2 .m
| |−−−t4 .m
| |−−−t5 .m
| |−−−t7 2 .m
| |−−−t7 4 .m
| |−−−t7 5 .m
| |−−−t8 .m
| |−−−t9 .m
| |−−−t10 8 .m
| |−−−t10 9 .m
|
|
|−−−func
| |−−−drawBackGround .m
| |−−−getDisProb .m
| |−−−getDivByPos .m
| |−−−isGoalKept .m
| |−−− i s InRec t .m
| |−−−normrnd c i r c l e .m
| |−−−uni fo rm 5case .m
| |−−−un i f o rm 5ca s e p lu s .m
| |−−−u n i f r n d c i r c l e .m
|

A.2 Main Codes

A.2.1 Task 2&3

Listing 2: Matlab Source Code for Task 2

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% params input
N = input (” Shots Times : ”) ;
R = input (” Repeating Times : ”) ;

11

% draw background
drawBackGround (Radius , Width , Length) ;

% ca l c u l a t e prs
[s core , totalTimes , prs , d rx , d bo] = getDisProb (R, N, Radius , Length , . . .

Width , true , @ u n i f r n d c i r c l e) ;

% add legend
legend ([d rx , d bo] , { ’ s cored shot ’ , ’ missed shot ’ }) ;
t s = sprintf (’ S ca t t e r p l o t f o r N=%d and R=%d . prs=%d%%’ , N, R, round(prs ∗1 0 0)) ;
t i t l e (t s) ;

d i s p l ay (prs) ;

A.2.2 Task 4

Listing 3: Matlab Source Code for Task 4

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% dec l e a r params
N = [100 , 1000 , 10000 , 100000] ;
R = 5 ;

% dec l e a r var
a r r a y p r s = [] ;

% ca l c u l a t e prs
for i = 1 : numel (N)

[score , totalTimes , prs] = getDisProb (R, N(i) , Radius , Length , . . .
Width , f a l s e , @ u n i f r n d c i r c l e) ;

a r r a y p r s = [ar ray prs , prs] ;
end

disp (a r r a y p r s) ;

%p l o t l i n e char t
plot ([1 , 2 , 3 , 4] , a r r a y p r s) ;
yl im ([0 . 4 5 0 . 5 5]) ;
xlabel (’N random shots ’) ;
ylabel (’ P r o b ab i l i t y ’) ;
x t i c k l a b e l s ({ ’ 100 ’ , ’ ’ , ’ 1000 ’ , ’ ’ , ’ 10000 ’ , ’ ’ , ’ 100000 ’ }) ;
t s = sprintf (’ S ca t t e r p l o t f o r N with R=%d . ’ , R) ;
t i t l e (t s) ;

A.2.3 Task 5

12

Listing 4: Matlab Source Code for Task 5

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% dec l e a r params
N = 1000 ;
R = [5 , 10 , 15 , 2 0] ;

% dec l e a r var
a r r a y p r s = [] ;

% ca l c u l a t e prs
for i = 1 : numel (R)

[score , totalTimes , prs] = getDisProb (R(i) , N, Radius , Length , . . .
Width , f a l s e , @ u n i f r n d c i r c l e) ;

a r r a y p r s = [ar ray prs , prs] ;
end

disp (a r r a y p r s) ;

%p l o t l i n e char t
plot (R, a r r a y p r s) ;
yl im ([0 . 4 5 0 . 5 5]) ;
xlabel (’R random shots ’) ;
ylabel (’ P r o b ab i l i t y ’) ;
t s = sprintf (’ S ca t t e r p l o t f o r R with N=%d . ’ , N) ;
t i t l e (t s) ;

A.2.4 Task 7

Listing 5: Matlab Source Code for Task 7 2

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% params input
N = input (” Shots Times : ”) ;
R = input (” Repeating Times : ”) ;

% draw background
drawBackGround (Radius , Width , Length) ;

% ca l c u l a t e prs
[s core , totalTimes , prs , d rx , d bo] = getDisProb (R, N, Radius , Length , . . .

Width , true , @normrnd circ le) ;

13

% add legend
legend ([d rx , d bo] , { ’ s cored shot ’ , ’ missed shot ’ }) ;
t s = sprintf (’ S ca t t e r p l o t f o r N=%d and R=%d . prs=%d%%’ , N, R, prs ∗100) ;
t i t l e (t s) ;

d i s p l ay (prs) ;

Listing 6: Matlab Source Code for Task 7 4

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% dec l e a r params
N = [100 , 1000 , 10000 , 100000] ;
R = 5 ;

% dec l e a r var
a r r a y p r s = [] ;

% ca l c u l a t e prs
for i = 1 : numel (N)

[score , totalTimes , prs] = getDisProb (R, N(i) , Radius , Length , . . .
Width , f a l s e , @normrnd circ le) ;

a r r a y p r s = [ar ray prs , prs] ;
end

disp (a r r a y p r s) ;

%p l o t l i n e char t
plot ([1 , 2 , 3 , 4] , a r r a y p r s) ;
yl im ([0 . 6 8 0 . 7 9]) ;
xlabel (’N random shots ’) ;
ylabel (’ P r o b ab i l i t y ’) ;
x t i c k l a b e l s ({ ’ 100 ’ , ’ ’ , ’ 1000 ’ , ’ ’ , ’ 10000 ’ , ’ ’ , ’ 100000 ’ }) ;
t s = sprintf (’ S ca t t e r p l o t f o r N with R=%d . ’ , R) ;
t i t l e (t s) ;

Listing 7: Matlab Source Code for Task 7 5

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% dec l e a r params
N = 1000 ;
R = [5 , 10 , 15 , 2 0] ;

14

% dec l e a r var
a r r a y p r s = [] ;

% ca l c u l a t e prs
for i = 1 : numel (R)

[score , totalTimes , prs] = getDisProb (R(i) , N, Radius , Length , . . .
Width , f a l s e , @normrnd circ le) ;

a r r a y p r s = [ar ray prs , prs] ;
end

disp (a r r a y p r s) ;

%p l o t l i n e char t
plot (R, a r r a y p r s) ;
yl im ([0 . 6 9 0 . 7 8]) ;
xlabel (’R random shots ’) ;
ylabel (’ P r o b ab i l i t y ’) ;
t s = sprintf (’ S ca t t e r p l o t f o r R with N=%d . ’ , N) ;
t i t l e (t s) ;

A.2.5 Task 8

Listing 8: Matlab Source Code for Task 8

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% params input
N = input (” Shots Times : ”) ;
R = input (” Repeating Times : ”) ;

% draw background
drawBackGround (Radius , Width , Length) ;

% ca l c u l a t e prs
[s core , totalTimes , prs , d rx , d bo] = getDisProb (R, N, Radius , Length , . . .

Width , true , @ u n i f r n d c i r c l e , @uniform 5case) ;

% add legend
legend ([d rx , d bo] , { ’ s cored shot ’ , ’ missed shot ’ }) ;
t s = sprintf (’ S ca t t e r p l o t f o r N=%d and R=%d . prs=%d%%’ , N, R, round(prs ∗1 0 0)) ;
t i t l e (t s) ;

d i s p l ay (prs) ;

A.2.6 Task 9

Listing 9: Matlab Source Code for Task 9

15

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% params input
N = input (” Shots Times : ”) ;
R = input (” Repeating Times : ”) ;

% draw background
drawBackGround (Radius , Width , Length) ;

% ca l c u l a t e prs
[s core , totalTimes , prs , d rx , d bo] = getDisProb (R, N, Radius , Length , . . .

Width , true , @normrnd circ le , @uniform 5case) ;

% add legend
legend ([d rx , d bo] , { ’ s cored shot ’ , ’ missed shot ’ }) ;
t s = sprintf (’ S ca t t e r p l o t f o r N=%d and R=%d . prs=%d%%’ , N, R, round(prs ∗1 0 0)) ;
t i t l e (t s) ;

d i s p l ay (prs) ;

A.2.7 Task 10

Listing 10: Matlab Source Code for Task 10 8

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% params input
N = input (” Shots Times : ”) ;
R = input (” Repeating Times : ”) ;

% draw background
drawBackGround (Radius , Width , Length) ;

% ca l c u l a t e prs
[s core , totalTimes , prs , d rx , d bo] = getDisProb (R, N, Radius , Length , . . .

Width , true , @ u n i f r n d c i r c l e , @uni form 5case p lus) ;

% add legend
legend ([d rx , d bo] , { ’ s cored shot ’ , ’ missed shot ’ }) ;
t s = sprintf (’ S ca t t e r p l o t f o r N=%d and R=%d . prs=%d%%’ , N, R, round(prs ∗1 0 0)) ;
t i t l e (t s) ;

d i s p l ay (prs) ;

16

Listing 11: Matlab Source Code for Task 10 9

% i n i t
clear
addpath (genpath (’ . / func / ’)) ;

% dec l e a r cons t
Radius = sqrt (5) ;
Width = 2 ;
Length = 4 ;

% params input
N = input (” Shots Times : ”) ;
R = input (” Repeating Times : ”) ;

% draw background
drawBackGround (Radius , Width , Length) ;

% ca l c u l a t e prs
[s core , totalTimes , prs , d rx , d bo] = getDisProb (R, N, Radius , Length , . . .

Width , true , @normrnd circ le , @uni form 5case p lus) ;

% add legend
legend ([d rx , d bo] , { ’ s cored shot ’ , ’ missed shot ’ }) ;
t s = sprintf (’ S ca t t e r p l o t f o r N=%d and R=%d . prs=%d%%’ , N, R, round(prs ∗1 0 0)) ;
t i t l e (t s) ;

d i s p l ay (prs) ;

A.3 Function Codes

A.3.1 Draw

Listing 12: Matlab Source Code for Function drawBackGround

function drawBackGround (Radius , Width , Length)
% prepare f i g u r e
hold on

% − draw c i r c l e
d ang = 0 : pi /100 : 2∗pi ;
plot (Radius∗cos (d ang) , Radius∗ sin (d ang) , ’− ’) ;

% − draw r e c t
l ine ([

−Length /2 , −Length /2 , Length /2 , Length /2 , −Length /2
] , [

−Width/2 , Width/2 , Width/2 , −Width/2 , −Width/2
]) ;

axis equal
end

A.3.2 Math

Listing 13: Matlab Source Code for Function getDisProb

17

% compute d i s t r i b u t a t i o n
function [s core , totalTimes , prs , d rx , d bo] = getDisProb (R, N, Radius , . . .

Length , Width , i sP l o t , disMethod , goalkeepMethod)
s co r e = 0 ;
tota lTimes = 0 ;
for m = 1 : R

for n = 1 : N
[x , y] = disMethod (Radius) ;
tota lTimes = tota lTimes + 1 ;
i f i s InRec t (Length /2 , Width/2 , x , y) && (nargin<8 | | ˜ isGoalKept (Length , . . .

Width , x , y , goalkeepMethod))
s co r e = sco r e + 1 ;
i f i s P l o t

d rx = plot (x , y , ’ rx ’) ;
end

else
i f i s P l o t

d bo = plot (x , y , ’ bo ’) ;
end

end
end
prs = sco r e / tota lTimes ;

end

A.3.3 Tools

Listing 14: Matlab Source Code for Function getDisProb

function r e s = getDivByPos (Length , Width , x , y)

ux=Length /4 ;
uy=Width /2 ;

x = x + Length /2 ;
y = y + Width /2 ;

px = ce i l (x/ux) ;
py = f loor (y/uy) ;

r e s = px + py ∗4 ;
end

Listing 15: Matlab Source Code for Function isGoalKept

function r e s = isGoalKept (Length , Width , x , y , goalkeepMethod)
div = getDivByPos (Length , Width , x , y) ;
act = goalkeepMethod () ;

pattern = [2 , 3 , 6 , 7 ; 2 , 5 , 0 , 0 ; 3 , 8 , 0 , 0 ; 1 , 2 , 0 , 0 ; 3 , 4 , 0 , 0] ;

i f ismember (div , pattern (act , :))
r e s = true ;

else
r e s = f a l s e ;

end

end

18

Listing 16: Matlab Source Code for Function isInRect

% judge i f a p o s i t i o n in a r e c t an g l e
function r e s = i s InRec t (x , y , x , y)

i f abs (x) < x && abs (y) < y
r e s = true ;

else
r e s = f a l s e ;

end
end

A.3.4 Distribution Methods

Listing 17: Matlab Source Code for Function normrnd circle

% ge t random po s i t i o n in c i r c l e
function [r e s x , r e s y] = normrnd c i r c l e (r)

while t rue
ang = 2∗pi∗rand (1) ;
t r = normrnd (0 , r) ;
r e s x = t r ∗cos (ang) ;
r e s y = t r ∗ sin (ang) ;
i f sqrt (r e s x ˆ2 + r e s y ˆ2) < r

break ;
end

end

Listing 18: Matlab Source Code for Function uniform 5case

function r e s = uni fo rm 5case ()

r e s = randi (5 , 1 , 1) ;

end

Listing 19: Matlab Source Code for Function uniform 5case plus

function r e s = un i f o rm 5ca s e p lu s ()

i f rand (1) <= 0.9
r e s = randi ([4 , 5] , 1 , 1) ;

else
r e s = randi (3 , 1 , 1) ;

end

end

Listing 20: Matlab Source Code for Function unifrnd circle

% ge t random po s i t i o n in c i r c l e
function [r e s x , r e s y] = u n i f r n d c i r c l e (r)

while t rue
r e s x = uni f rnd(−r , r , 1 , 1) ;
r e s y = uni f rnd(−r , r , 1 , 1) ;
an s r = sqrt (r e s x ˆ2 + r e s y ˆ 2) ;

19

i f ans r < r
break

end
end

end

20

	Introduction
	Materials and Methods
	Part 1: No Goalkeeper Tests
	Part 2: With Goalkeeper Tests

	Results
	Part 1: No Goalkeeper Tests
	Task 1: Calculation
	Task 2&3: Matlab Simulation
	Task 4: Perspective Towards N
	Task 5: Perspective Towards R
	Task 6: Compare R and N
	Task 7: Gaussian Distribution

	Part 2: With Goalkeeper Tests
	Task 8: Uniform Case
	Task 9: Gaussian Case
	Task 10: Smarter Goalkeepers

	Discussion
	Conclusions
	References
	Appendices
	Matlab Source Code
	Overall Structure
	Main Codes
	Task 2&3
	Task 4
	Task 5
	Task 7
	Task 8
	Task 9
	Task 10

	Function Codes
	Draw
	Math
	Tools
	Distribution Methods

