You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

198 lines
5.5 KiB

4 years ago
---
title: 工程电磁学
4 years ago
titleEN: Engineering Electromagnetics
4 years ago
date: 2019-02-26
categories:
- notes
tags:
- maxwell
---
4 years ago
{% raw %}<span class=".zh">{% endraw %}
4 years ago
麦克斯韦大法好!!
4 years ago
{% raw %}</span>{% endraw %}
{% raw %}<span class=".en">{% endraw %}
Maxwell Dafa is good! !
{% raw %}</span>{% endraw %}
4 years ago
<!--more-->
4 years ago
{% raw %}
<script>
session.onload(function(){
if(page.tran.getLang() == 'en'){
tips.warning({
title: 'Caution',
position: 'topRight',
message: 'This page was translated by Machine!!',
buttons: [['<button>Show Original Page</button>', function (instance, toast) {
page.tran.setLang('zh');
instance.hide({ transitionOut: 'fadeOut' }, toast, 'button');
}, true]]
});
}
});
</script>
{% endraw %}
{% raw %}<span class=".zh">{% endraw %}
4 years ago
### 先供上麦克斯韦方程 膜拜膜拜( o=^•ェ•)o
$$
\begin{eqnarray}
\nabla\cdot\vec{E} &=& \frac{\rho}{\varepsilon_0} \\
\nabla\cdot\vec{B} &=& 0 \\
\nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} \\
\nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right)
\end{eqnarray}
$$
----------------
## 第一话 - 高斯生库伦
- 假设空间中两点电荷$Q_{1}$,$Q_{2}$,相距d,欲求其相互作用的电场力。
- 现以$Q_{1}$为圆心,$d$为半径做球。根据高斯law可知球面上的电通量只与球内电荷量有关,本例中为$\frac{Q_{1}}{\varepsilon_0}$。
- 将上式中电通量除以求表面积可得电场强度$\frac{Q_{1}}{4\pi d^{2}\varepsilon_0}$
- 场强乘以$Q_{2}$即可得库仑力$\frac{Q_{1}Q_{2}}{4\pi d^{2}\varepsilon_0}$
- 令$k=\frac{1}{4\pi \varepsilon_0}$整理得
$$F = \frac{k Q_{1}Q_{2}}{d^{2}}$$
证毕
## 第二话 - 高斯金箍棒
- 假设一均匀带电长度正无穷细杆,电荷密度为$\lambda$,求距其$d$处场强。
- 绕杆画一个过待求点的圆柱,设高为$x$。
- 由于杆长无限,圆柱两底面电场被抵消。
- 圆柱侧面积为$2\pi dx$
- 圆柱内电荷量为$\lambda x$
- 引入高斯,得
$$
2\pi dxE = \frac{\lambda x}{\varepsilon_{0}}
$$
整理得
$$
E = \frac{\lambda}{2\pi d\varepsilon_{0}}
$$
证毕
## 高斯球球球
- 首先要有一个带电小球,电量$Q$,想求其外部距其圆心$d$处场强。
- 然后可列式
$$
4\pi d^2 E = \frac{Q}{\varepsilon_0}
$$
整理得
$$
E = \frac{Q}{4\pi \varepsilon_0 d^2}
$$
## 高斯大面
- 首先有一个均匀带电无穷面,带电面密度$\rho$,欲求距其$d$的点场强。
- 以无穷面为中央横截面,做一个底面圆心为待求点的圆柱,半径为$r$。
- 由于电场线皆平行,只有两个底面有电场线穿过。
- 可列式
$$
2\pi r^2 E = \frac{\rho \pi r^2}{\varepsilon_0}
$$
整理得
$$
E = \frac{\rho}{2\varepsilon_0}
$$
完事
-----------
4 years ago
To Be Continued...
{% raw %}</span>{% endraw %}
{% raw %}<span class=".en">{% endraw %}
### First offer to Maxwell's equation, worship ( o=^•ェ•)o
$$
\begin{eqnarray}
\nabla\cdot\vec{E} &=& \frac{\rho}{\varepsilon_0} \\
\nabla\cdot\vec{B} &=& 0 \\
\nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} \\
\nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right)
\end{eqnarray}
$$
----------------
## Chapter One-Gossian Cullen
- Suppose two electric charges $Q_{1}$ and $Q_{2}$ in space are separated by d, and the electric field force they want to interact with.
- Now take $Q_{1}$ as the center of the circle and $d$ as the radius to make the ball. According to the Gaussian law, the electric flux on the sphere is only related to the amount of charge in the sphere, which is $\frac{Q_{1}}{\varepsilon_0}$ in this example.
- Divide the electric flux in the above formula by the surface area to get the electric field intensity $\frac{Q_{1}}{4\pi d^{2}\varepsilon_0}$
- Field strength is multiplied by $Q_{2}$ to get Coulomb force $\frac{Q_{1}Q_{2}}{4\pi d^{2}\varepsilon_0}$
- Let $k=\frac{1}{4\pi \varepsilon_0}$ to get
$$F = \frac{k Q_{1}Q_{2}}{d^{2}}$$
Completed
## Chapter 2-Gauss Golden Cudgel
- Assuming that a uniformly charged length is positively infinitely thin and the charge density is $\lambda$, find the field strength $d$ away from it.
- Draw a cylinder around the rod and set the height to be $x$.
- Due to the infinite length of the rod, the electric fields on the two bottom surfaces of the cylinder are cancelled.
- The cylindrical side area is $2\pi dx$
- The amount of charge in the cylinder is $\lambda x$
- Introduce Gaussian, get
$$
2\pi dxE = \frac{\lambda x}{\varepsilon_{0}}
$$
Organized
$$
E = \frac{\lambda}{2\pi d\varepsilon_{0}}
$$
Completed
## Gauss Ball Ball
- First, there must be a charged ball with electricity $Q$, and I want to find the field strength at the distance of $d$ from the center of the ball.
- Then columnable
$$
4\pi d^2 E = \frac{Q}{\varepsilon_0}
$$
Organized
$$
E = \frac{Q}{4\pi \varepsilon_0 d^2}
$$
complete
## Gaussian Noodles
- First, there is a uniformly charged infinite surface, the charged surface density is $\rho$, and the field strength of the point $d$ is desired.
- Using the infinite plane as the central cross section, make a cylinder with the center of the bottom surface as the point to be found, and the radius is $r$.
- Since the electric field lines are all parallel, only two bottom surfaces have electric field lines passing through.
- Columnable
$$
2\pi r^2 E = \frac{\rho \pi r^2}{\varepsilon_0}
$$
Organized
$$
E = \frac{\rho}{2\varepsilon_0}
$$
Finished
-----------
To Be Continued...
{% raw %}</span>{% endraw %}