You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

5.5 KiB

title titleEN date categories tags
工程电磁学 Engineering Electromagnetics 2019-02-26 [notes] [maxwell]

{% raw %}{% endraw %}

麦克斯韦大法好!!

{% raw %}{% endraw %}

{% raw %}{% endraw %} Maxwell Dafa is good! ! {% raw %}{% endraw %}

{% raw %}

{% endraw %}

{% raw %}{% endraw %}

先供上麦克斯韦方程 膜拜膜拜( o=^•ェ•)o

$$ \begin{eqnarray} \nabla\cdot\vec{E} &=& \frac{\rho}{\varepsilon_0} \ \nabla\cdot\vec{B} &=& 0 \ \nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} \ \nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right) \end{eqnarray} $$


第一话 - 高斯生库伦

  • 假设空间中两点电荷$Q_{1}$,$Q_{2}$,相距d,欲求其相互作用的电场力。
  • 现以$Q_{1}$为圆心,$d$为半径做球。根据高斯law可知球面上的电通量只与球内电荷量有关,本例中为$\frac{Q_{1}}{\varepsilon_0}$。
  • 将上式中电通量除以求表面积可得电场强度$\frac{Q_{1}}{4\pi d^{2}\varepsilon_0}$
  • 场强乘以$Q_{2}$即可得库仑力$\frac{Q_{1}Q_{2}}{4\pi d^{2}\varepsilon_0}$
  • 令$k=\frac{1}{4\pi \varepsilon_0}$整理得 $$F = \frac{k Q_{1}Q_{2}}{d^{2}}$$ 证毕

第二话 - 高斯金箍棒

  • 假设一均匀带电长度正无穷细杆,电荷密度为$\lambda$,求距其$d$处场强。
  • 绕杆画一个过待求点的圆柱,设高为$x$。
  • 由于杆长无限,圆柱两底面电场被抵消。
  • 圆柱侧面积为$2\pi dx$
  • 圆柱内电荷量为$\lambda x$
  • 引入高斯,得 $$ 2\pi dxE = \frac{\lambda x}{\varepsilon_{0}} $$ 整理得 $$ E = \frac{\lambda}{2\pi d\varepsilon_{0}} $$ 证毕

高斯球球球

  • 首先要有一个带电小球,电量$Q$,想求其外部距其圆心$d$处场强。
  • 然后可列式 $$ 4\pi d^2 E = \frac{Q}{\varepsilon_0} $$ 整理得 $$ E = \frac{Q}{4\pi \varepsilon_0 d^2} $$ 毕

高斯大面

  • 首先有一个均匀带电无穷面,带电面密度$\rho$,欲求距其$d$的点场强。
  • 以无穷面为中央横截面,做一个底面圆心为待求点的圆柱,半径为$r$。
  • 由于电场线皆平行,只有两个底面有电场线穿过。
  • 可列式 $$ 2\pi r^2 E = \frac{\rho \pi r^2}{\varepsilon_0} $$ 整理得 $$ E = \frac{\rho}{2\varepsilon_0} $$ 完事

To Be Continued...

{% raw %}{% endraw %}

{% raw %}{% endraw %}

First offer to Maxwell's equation, worship ( o=^•ェ•)o

$$ \begin{eqnarray} \nabla\cdot\vec{E} &=& \frac{\rho}{\varepsilon_0} \ \nabla\cdot\vec{B} &=& 0 \ \nabla\times\vec{E} &=& -\frac{\partial B}{\partial t} \ \nabla\times\vec{B} &=& \mu_0\left(\vec{J}+\varepsilon_0\frac{\partial E}{\partial t} \right) \end{eqnarray} $$


Chapter One-Gossian Cullen

  • Suppose two electric charges $Q_{1}$ and $Q_{2}$ in space are separated by d, and the electric field force they want to interact with.
  • Now take $Q_{1}$ as the center of the circle and $d$ as the radius to make the ball. According to the Gaussian law, the electric flux on the sphere is only related to the amount of charge in the sphere, which is $\frac{Q_{1}}{\varepsilon_0}$ in this example.
  • Divide the electric flux in the above formula by the surface area to get the electric field intensity $\frac{Q_{1}}{4\pi d^{2}\varepsilon_0}$
  • Field strength is multiplied by $Q_{2}$ to get Coulomb force $\frac{Q_{1}Q_{2}}{4\pi d^{2}\varepsilon_0}$
  • Let $k=\frac{1}{4\pi \varepsilon_0}$ to get $$F = \frac{k Q_{1}Q_{2}}{d^{2}}$$ Completed

Chapter 2-Gauss Golden Cudgel

  • Assuming that a uniformly charged length is positively infinitely thin and the charge density is $\lambda$, find the field strength $d$ away from it.
  • Draw a cylinder around the rod and set the height to be $x$.
  • Due to the infinite length of the rod, the electric fields on the two bottom surfaces of the cylinder are cancelled.
  • The cylindrical side area is $2\pi dx$
  • The amount of charge in the cylinder is $\lambda x$
  • Introduce Gaussian, get $$ 2\pi dxE = \frac{\lambda x}{\varepsilon_{0}} $$ Organized $$ E = \frac{\lambda}{2\pi d\varepsilon_{0}} $$ Completed

Gauss Ball Ball

  • First, there must be a charged ball with electricity $Q$, and I want to find the field strength at the distance of $d$ from the center of the ball.
  • Then columnable $$ 4\pi d^2 E = \frac{Q}{\varepsilon_0} $$ Organized $$ E = \frac{Q}{4\pi \varepsilon_0 d^2} $$ complete

Gaussian Noodles

  • First, there is a uniformly charged infinite surface, the charged surface density is $\rho$, and the field strength of the point $d$ is desired.
  • Using the infinite plane as the central cross section, make a cylinder with the center of the bottom surface as the point to be found, and the radius is $r$.
  • Since the electric field lines are all parallel, only two bottom surfaces have electric field lines passing through.
  • Columnable $$ 2\pi r^2 E = \frac{\rho \pi r^2}{\varepsilon_0} $$ Organized $$ E = \frac{\rho}{2\varepsilon_0} $$ Finished

To Be Continued...

{% raw %}{% endraw %}